419 research outputs found

    Discrete-Event Control and Optimization of Container Terminal Operations

    Get PDF
    This thesis discusses the dynamical modeling of complex container terminal operations. In the current literature, the systems are usually modeled in static way using linear programming techniques. This setting does not completely capture the dynamic aspects in the operations, where information about external factors such as ships and trucks arrivals or departures and also the availability of terminal's equipment can always change. We propose dynamical modeling of container terminal operations using discrete-event systems (DES) modeling framework. The basic framework in this thesis is the DES modeling for berth and quay crane allocation problem (BCAP) where the systems are not only dynamic, but also asynchronous. We propose a novel berth and QC allocation method, namely the model predictive allocation (MPA) which is based on model predictive control principle and rolling horizon implementation. The DES models with asynchronous event transition is mathematically analyzed to show the efficacy of our method. We study an optimal input allocation problem for a class of discrete-event systems with dynamic input sequence (DESDIS). We show that in particular, the control input can be obtained by the minimization/maximization of the present input sequence only. We have shown that the proposed approach performed better than the existing method used in the studied terminal and state-of-the-art methods in the literature

    Sequence-Based Simulation-Optimization Framework With Application to Port Operations at Multimodal Container Terminals

    Get PDF
    It is evident in previous works that operations research and mathematical algorithms can provide optimal or near-optimal solutions, whereas simulation models can aid in predicting and studying the behavior of systems over time and monitor performance under stochastic and uncertain circumstances. Given the intensive computational effort that simulation optimization methods impose, especially for large and complex systems like container terminals, a favorable approach is to reduce the search space to decrease the amount of computation. A maritime port can consist of multiple terminals with specific functionalities and specialized equipment. A container terminal is one of several facilities in a port that involves numerous resources and entities. It is also where containers are stored and transported, making the container terminal a complex system. Problems such as berth allocation, quay and yard crane scheduling and assignment, storage yard layout configuration, container re-handling, customs and security, and risk analysis become particularly challenging. Discrete-event simulation (DES) models are typically developed for complex and stochastic systems such as container terminals to study their behavior under different scenarios and circumstances. Simulation-optimization methods have emerged as an approach to find optimal values for input variables that maximize certain output metric(s) of the simulation. Various traditional and nontraditional approaches of simulation-optimization continue to be used to aid in decision making. In this dissertation, a novel framework for simulation-optimization is developed, implemented, and validated to study the influence of using a sequence (ordering) of decision variables (resource levels) for simulation-based optimization in resource allocation problems. This approach aims to reduce the computational effort of optimizing large simulations by breaking the simulation-optimization problem into stages. Since container terminals are complex stochastic systems consisting of different areas with detailed and critical functions that may affect the output, a platform that accurately simulates such a system can be of significant analytical benefit. To implement and validate the developed framework, a large-scale complex container terminal discrete-event simulation model was developed and validated based on a real system and then used as a testing platform for various hypothesized algorithms studied in this work

    Sea Container Terminals

    Get PDF
    Due to a rapid growth in world trade and a huge increase in containerized goods, sea container terminals play a vital role in globe-spanning supply chains. Container terminals should be able to handle large ships, with large call sizes within the shortest time possible, and at competitive rates. In response, terminal operators, shipping liners, and port authorities are investing in new technologies to improve container handling infrastructure and operational efficiency. Container terminals face challenging research problems which have received much attention from the academic community. The focus of this paper is to highlight the recent developments in the container terminals, which can be categorized into three areas: (1) innovative container terminal technologies, (2) new OR directions and models for existing research areas, and (3) emerging areas in container terminal research. By choosing this focus, we complement existing reviews on container terminal operations

    Simultaneous allocation and scheduling of quay cranes, yard cranes, and trucks in dynamical integrated container terminal operations

    Get PDF
    We present a dynamical modeling of integrated (end-to-end) container terminal operations using finite state machine (FSM) framework where each state machine is represented by a discrete-event system (DES) formulation. The hybrid model incorporates the operations of quay cranes (QC), internal trucks (IT), and yard cranes (YC) and also the selection of storage positions in container yard (CY) and vessel bays. The QC and YC are connected by the IT in our models. As opposed to the commonly adapted modeling in container terminal operations, in which the entire information/inputs to the systems are known for a defined planning horizon, in this research we use real-time trucks, crane, and container storage operations information, which are always updated as the time evolves. The dynamical model shows that the predicted state variables closely follow the actual field data from a container terminal in Tanjung Priuk, Jakarta, Indonesia. Subsequently, using the integrated container terminal hybrid model, we proposed a model predictive algorithm (MPA) to obtain the near-optimal solution of the integrated terminal operations problem, namely the simultaneous allocation and scheduling of QC, IT, and YC, as well as selecting the storage location for the inbound and outbound containers in the CY and vessel. The numerical experiment based on the extensive Monte Carlo simulation and real dataset show that the MPA outperforms by 3-6% both of the policies currently implemented by the terminal operator and the state-of-the-art method from the current literature

    Simulation analysis of container terminal capacity at multi-terminal Indonesia(MIT)

    Get PDF

    The synergistic effect of operational research and big data analytics in greening container terminal operations: a review and future directions

    Get PDF
    Container Terminals (CTs) are continuously presented with highly interrelated, complex, and uncertain planning tasks. The ever-increasing intensity of operations at CTs in recent years has also resulted in increasing environmental concerns, and they are experiencing an unprecedented pressure to lower their emissions. Operational Research (OR), as a key player in the optimisation of the complex decision problems that arise from the quay and land side operations at CTs, has been therefore presented with new challenges and opportunities to incorporate environmental considerations into decision making and better utilise the ā€˜big dataā€™ that is continuously generated from the never-stopping operations at CTs. The state-of-the-art literature on OR's incorporation of environmental considerations and its interplay with Big Data Analytics (BDA) is, however, still very much underdeveloped, fragmented, and divergent, and a guiding framework is completely missing. This paper presents a review of the most relevant developments in the field and sheds light on promising research opportunities for the better exploitation of the synergistic effect of the two disciplines in addressing CT operational problems, while incorporating uncertainty and environmental concerns efficiently. The paper finds that while OR has thus far contributed to improving the environmental performance of CTs (rather implicitly), this can be much further stepped up with more explicit incorporation of environmental considerations and better exploitation of BDA predictive modelling capabilities. New interdisciplinary research at the intersection of conventional CT optimisation problems, energy management and sizing, and net-zero technology and energy vectors adoption is also presented as a prominent line of future research

    Nature Inspired Metaheuristics for Optimizing Problems at a Container Terminal

    Get PDF
    Nowadays, maritime transport is the backbone of the international trade of goods. Therefore, seaports play a very important role in global transport. The use of containers is significantly represented in the maritime transport. Considering the increased number of container shipments in the global transport, seaport container terminals have to be adapted to a new situation and provide the best possible service of container transfer by reducing the transfer cost and the container transit time. Therefore, there is a need for optimization of the whole container transport process within the terminal. The logistic problems of the container terminals have become very complex and logistics experts cannot manually adjust the operations of terminal processes that will optimize the usage of resources. Hence, to achieve further improvements of terminal logistics, there is a need to introduce scientific methods such as metaheuristics that will enable better and optimized use of the terminal resources in an automated way. There is a large number of research papers that have successfully proposed the solutions of optimizing the container logistic problems with well-known metaheuristics inspired by the nature. However, there is a continuous emergence of new nature inspired metaheuristics today, like artificial bee colony algorithm, firefly algorithm and bat algorithm, that outperform the well-known metaheuristics considering the most popular optimization problems like travel salesman problem. Considering these results of comparing algorithms, we assume that better results of optimization of container terminal logistic problems can be achieved by introducing these new nature inspired metaheuristics. In this paper we have described and classified the main subsystems of the container terminal and its logistic problems that need to be optimized. We have also presented a review of new nature inspired metaheuristics (bee, firefly and bat algorithm) that could be used in the optimization of these problems within the terminal

    Seaport Management Aspects and Perspectives: an Overview

    Get PDF
    Ireland occupies the northern part of the western European coast which has a 70,000 Kilometres coasting along two oceans and four seas. These coasts are Europeā€™s lifeblood and represent the trade routes, climate regulator and source of food, energy and resources. Seaports and shipping are key maritime activities which allow European coast countries to benefit from the rapid growth of international trade. Therefore, port management became the centre of governmentsā€™ interest and the focal point of research to improve the efficiency. This research aims to summaries past publications of seaport systems to highlight challenges and reveal relevant research gaps. Having the objective to classify the literature, a comprehensive review of journal articles and the best practices in the field was conducted. A wide variety of management issues and opportunities to improve service delivery of port systems was discussed in a three main categories based on port authority objectives; strategic, economic and operational
    • ā€¦
    corecore