4,678 research outputs found

    A Goal-Directed Implementation of Query Answering for Hybrid MKNF Knowledge Bases

    Full text link
    Ontologies and rules are usually loosely coupled in knowledge representation formalisms. In fact, ontologies use open-world reasoning while the leading semantics for rules use non-monotonic, closed-world reasoning. One exception is the tightly-coupled framework of Minimal Knowledge and Negation as Failure (MKNF), which allows statements about individuals to be jointly derived via entailment from an ontology and inferences from rules. Nonetheless, the practical usefulness of MKNF has not always been clear, although recent work has formalized a general resolution-based method for querying MKNF when rules are taken to have the well-founded semantics, and the ontology is modeled by a general oracle. That work leaves open what algorithms should be used to relate the entailments of the ontology and the inferences of rules. In this paper we provide such algorithms, and describe the implementation of a query-driven system, CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules under the well-founded semantics and a (monotonic) ontology, represented by a CDF Type-1 (ALQ) theory. To appear in Theory and Practice of Logic Programming (TPLP

    Abduction in Well-Founded Semantics and Generalized Stable Models

    Full text link
    Abductive logic programming offers a formalism to declaratively express and solve problems in areas such as diagnosis, planning, belief revision and hypothetical reasoning. Tabled logic programming offers a computational mechanism that provides a level of declarativity superior to that of Prolog, and which has supported successful applications in fields such as parsing, program analysis, and model checking. In this paper we show how to use tabled logic programming to evaluate queries to abductive frameworks with integrity constraints when these frameworks contain both default and explicit negation. The result is the ability to compute abduction over well-founded semantics with explicit negation and answer sets. Our approach consists of a transformation and an evaluation method. The transformation adjoins to each objective literal OO in a program, an objective literal not(O)not(O) along with rules that ensure that not(O)not(O) will be true if and only if OO is false. We call the resulting program a {\em dual} program. The evaluation method, \wfsmeth, then operates on the dual program. \wfsmeth{} is sound and complete for evaluating queries to abductive frameworks whose entailment method is based on either the well-founded semantics with explicit negation, or on answer sets. Further, \wfsmeth{} is asymptotically as efficient as any known method for either class of problems. In addition, when abduction is not desired, \wfsmeth{} operating on a dual program provides a novel tabling method for evaluating queries to ground extended programs whose complexity and termination properties are similar to those of the best tabling methods for the well-founded semantics. A publicly available meta-interpreter has been developed for \wfsmeth{} using the XSB system.Comment: 48 pages; To appear in Theory and Practice in Logic Programmin

    Towards Intelligent Databases

    Get PDF
    This article is a presentation of the objectives and techniques of deductive databases. The deductive approach to databases aims at extending with intensional definitions other database paradigms that describe applications extensionaUy. We first show how constructive specifications can be expressed with deduction rules, and how normative conditions can be defined using integrity constraints. We outline the principles of bottom-up and top-down query answering procedures and present the techniques used for integrity checking. We then argue that it is often desirable to manage with a database system not only database applications, but also specifications of system components. We present such meta-level specifications and discuss their advantages over conventional approaches

    Evaluating Datalog via Tree Automata and Cycluits

    Full text link
    We investigate parameterizations of both database instances and queries that make query evaluation fixed-parameter tractable in combined complexity. We show that clique-frontier-guarded Datalog with stratified negation (CFG-Datalog) enjoys bilinear-time evaluation on structures of bounded treewidth for programs of bounded rule size. Such programs capture in particular conjunctive queries with simplicial decompositions of bounded width, guarded negation fragment queries of bounded CQ-rank, or two-way regular path queries. Our result is shown by translating to alternating two-way automata, whose semantics is defined via cyclic provenance circuits (cycluits) that can be tractably evaluated.Comment: 56 pages, 63 references. Journal version of "Combined Tractability of Query Evaluation via Tree Automata and Cycluits (Extended Version)" at arXiv:1612.04203. Up to the stylesheet, page/environment numbering, and possible minor publisher-induced changes, this is the exact content of the journal paper that will appear in Theory of Computing Systems. Update wrt version 1: latest reviewer feedbac

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes
    corecore