24,309 research outputs found

    Intelligent Association Exploration and Exploitation of Fuzzy Agents in Ambient Intelligent Environments

    Get PDF
    This paper presents a novel fuzzy-based intelligent architecture that aims to find relevant and important associations between embedded-agent based services that form Ambient Intelligent Environments (AIEs). The embedded agents are used in two ways; first they monitor the inhabitants of the AIE, learning their behaviours in an online, non-intrusive and life-long fashion with the aim of pre-emptively setting the environment to the users preferred state. Secondly, they evaluate the relevance and significance of the associations to various services with the aim of eliminating redundant associations in order to minimize the agent computational latency within the AIE. The embedded agents employ fuzzy-logic due to its robustness to the uncertainties, noise and imprecision encountered in AIEs. We describe unique real world experiments that were conducted in the Essex intelligent Dormitory (iDorm) to evaluate and validate the significance of the proposed architecture and methods

    Simulation of complex environments:the Fuzzy Cognitive Agent

    Get PDF
    The world is becoming increasingly competitive by the action of liberalised national and global markets. In parallel these markets have become increasingly complex making it difficult for participants to optimise their trading actions. In response, many differing computer simulation techniques have been investigated to develop either a deeper understanding of these evolving markets or to create effective system support tools. In this paper we report our efforts to develop a novel simulation platform using fuzzy cognitive agents (FCA). Our approach encapsulates fuzzy cognitive maps (FCM) generated on the Matlab Simulink platform within commercially available agent software. We firstly present our implementation of Matlab Simulink FCMs and then show how such FCMs can be integrated within a conceptual FCA architecture. Finally we report on our efforts to realise an FCA by the integration of a Matlab Simulink based FCM with the Jack Intelligent Agent Toolkit

    Adding Contextual Information to Intrusion Detection Systems Using Fuzzy Cognitive Maps

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In the last few years there has been considerable increase in the efficiency of Intrusion Detection Systems (IDSs). However, networks are still the victim of attacks. As the complexity of these attacks keeps increasing, new and more robust detection mechanisms need to be developed. The next generation of IDSs should be designed incorporating reasoning engines supported by contextual information about the network, cognitive information and situational awareness to improve their detection results. In this paper, we propose the use of a Fuzzy Cognitive Map (FCM) in conjunction with an IDS to incorporate contextual information into the detection process. We have evaluated the use of FCMs to adjust the Basic Probability Assignment (BPA) values defined prior to the data fusion process, which is crucial for the IDS that we have developed. The experimental results that we present verify that FCMs can improve the efficiency of our IDS by reducing the number of false alarms, while not affecting the number of correct detections

    Self-Organizing Information Fusion and Hierarchical Knowledge Discovery: A New Framework Using Artmap Neural Networks

    Full text link
    Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016, NMA 501-03-1-2030); National Science Foundation (SBE-0354378, DGE-0221680); Office of Naval Research (N00014-01-1-0624); Department of Homeland Securit

    Using the Pattern-of-Life in Networks to Improve the Effectiveness of Intrusion Detection Systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.As the complexity of cyber-attacks keeps increasing, new and more robust detection mechanisms need to be developed. The next generation of Intrusion Detection Systems (IDSs) should be able to adapt their detection characteristics based not only on the measureable network traffic, but also on the available high- level information related to the protected network to improve their detection results. We make use of the Pattern-of-Life (PoL) of a network as the main source of high-level information, which is correlated with the time of the day and the usage of the network resources. We propose the use of a Fuzzy Cognitive Map (FCM) to incorporate the PoL into the detection process. The main aim of this work is to evidence the improved the detection performance of an IDS using an FCM to leverage on network related contextual information. The results that we present verify that the proposed method improves the effectiveness of our IDS by reducing the total number of false alarms; providing an improvement of 9.68% when all the considered metrics are combined and a peak improvement of up to 35.64%, depending on particular metric combination

    Unifying Multiple Knowledge Domains Using the ARTMAP Information Fusion System

    Full text link
    Sensors working at different times, locations, and scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels that are reconciled by their implicit underlying relationships. Even when such relationships are unknown to the user, an ARTMAP information fusion system discovers a hierarchical knowledge structure for a labeled dataset. The present paper addresses the problem of integrating two or more independent knowledge hierarchies based on the same low-level classes. The new system fuses independent domains into a unified knowledge structure, discovering cross-domain rules in this process. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, ARTMAP information fusion system features distributed code representations that exploit the neural network’s capacity for one-to-many learning. The fusion system software and testbed datasets are available from http://cns.bu.edu/techlabNational Science Foundation (SBE-0354378); National Geospatial-Intelligence Agency (NMA 201-01-1-2016

    Application of Fuzzy Cognitive Mapping in Livelihood Vulnerability Analysis

    Get PDF
    Feedback mechanisms are important in the analysis of vulnerability and resilience of social-ecological systems, as well as in the analysis of livelihoods, but how to evaluate systems with direct feedbacks has been a great challenge. We applied fuzzy cognitive mapping, a tool that allows analysis of both direct and indirect feedbacks and can be used to explore the vulnerabilities of livelihoods to identified hazards. We studied characteristics and drivers of rural livelihoods in the Great Limpopo Transfrontier Conservation Area in southern Africa to assess the vulnerability of inhabitants to the different hazards they face. The process involved four steps: (1) surveys and interviews to identify the major livelihood types; (2) description of specific livelihood types in a system format using fuzzy cognitive maps (FCMs), a semi-quantitative tool that models systems based on people’s knowledge; (3) linking variables and drivers in FCMs by attaching weights; and (4) defining and applying scenarios to visualize the effects of drought and changing park boundaries on cash and household food security. FCMs successfully gave information concerning the nature (increase or decrease) and magnitude by which a livelihood system changed under different scenarios. However, they did not explain the recovery path in relation to time and pattern (e.g., how long it takes for cattle to return to desired numbers after a drought). Using FCMs revealed that issues of policy, such as changing situations at borders, can strongly aggravate effects of climate change such as drought. FCMs revealed hidden knowledge and gave insights that improved the understanding of the complexity of livelihood systems in a way that is better appreciated by stakeholders
    corecore