974 research outputs found

    Extremum Seeking-based Iterative Learning Linear MPC

    Full text link
    In this work we study the problem of adaptive MPC for linear time-invariant uncertain models. We assume linear models with parametric uncertainties, and propose an iterative multi-variable extremum seeking (MES)-based learning MPC algorithm to learn on-line the uncertain parameters and update the MPC model. We show the effectiveness of this algorithm on a DC servo motor control example.Comment: To appear at the IEEE MSC 201

    Robust sliding mode‐based extremum‐seeking controller for reaction systems via uncertainty estimation approach

    Get PDF
    "This paper deals with the design of a robust sliding mode‐based extremum‐seeking controller aimed at the online optimization of a class of uncertain reaction systems. The design methodology is based on an input–output linearizing method with variable‐structure feedback, such that the closed‐loop system converges to a neighborhood of the optimal set point with sliding mode motion. In contrast with previous extremum‐seeking control algorithms, the control scheme includes a dynamic modelling‐error estimator to compensate for unknown terms related with model uncertainties and unmeasured disturbances. The proposed online optimization scheme does not make use of a dither signal or a gradient‐based optimization algorithm. Practical stabilizability for the closed‐loop system around to the unknown optimal set point is analyzed. Numerical experiments for two nonlinear processes illustrate the effectiveness of the proposed robust control scheme.

    Advanced control and optimisation of DC-DC converters with application to low carbon technologies

    Get PDF
    Prompted by a desire to minimise losses between power sources and loads, the aim of this Thesis is to develop novel maximum power point tracking (MPPT) algorithms to allow for efficient power conversion within low carbon technologies. Such technologies include: thermoelectric generators (TEG), photovoltaic (PV) systems, fuel cells (FC) systems, wind turbines etc. MPPT can be efficiently achieved using extremum seeking control (ESC) also known as perturbation based extremum seeking control. The basic idea of an ESC is to search for an extrema in a closed loop fashion requiring only a minimum of a priori knowledge of the plant or system or a cost function. In recognition of problems that accompany ESC, such as limit cycles, convergence speed, and inability to search for global maximum in the presence local maxima this Thesis proposes novel schemes based on extensions of ESC. The first proposed scheme is a variance based switching extremum seeking control (VBS-ESC), which reduces the amplitude of the limit cycle oscillations. The second scheme proposed is a state dependent parameter extremum seeking control (SDP-ESC), which allows the exponential decay of the perturbation signal. Both the VBS-ESC and the SDP-ESC are universal adaptive control schemes that can be applied in the aforementioned systems. Both are suitable for local maxima search. The global maximum search scheme proposed in this Thesis is based on extensions of the SDP-ESC. Convergence to the global maximum is achieved by the use of a searching window mechanism which is capable of scanning all available maxima within operating range. The ability of the proposed scheme to converge to the global maximum is demonstrated through various examples. Through both simulation and experimental studies the benefit of the SDP-ESC has been consistently demonstrated
    • 

    corecore