51,972 research outputs found

    Methods for Bayesian power spectrum inference with galaxy surveys

    Full text link
    We derive and implement a full Bayesian large scale structure inference method aiming at precision recovery of the cosmological power spectrum from galaxy redshift surveys. Our approach improves over previous Bayesian methods by performing a joint inference of the three dimensional density field, the cosmological power spectrum, luminosity dependent galaxy biases and corresponding normalizations. We account for all joint and correlated uncertainties between all inferred quantities. Classes of galaxies with different biases are treated as separate sub samples. The method therefore also allows the combined analysis of more than one galaxy survey. In particular, it solves the problem of inferring the power spectrum from galaxy surveys with non-trivial survey geometries by exploring the joint posterior distribution with efficient implementations of multiple block Markov chain and Hybrid Monte Carlo methods. Our Markov sampler achieves high statistical efficiency in low signal to noise regimes by using a deterministic reversible jump algorithm. We test our method on an artificial mock galaxy survey, emulating characteristic features of the Sloan Digital Sky Survey data release 7, such as its survey geometry and luminosity dependent biases. These tests demonstrate the numerical feasibility of our large scale Bayesian inference frame work when the parameter space has millions of dimensions. The method reveals and correctly treats the anti-correlation between bias amplitudes and power spectrum, which are not taken into account in current approaches to power spectrum estimation, a 20 percent effect across large ranges in k-space. In addition, the method results in constrained realizations of density fields obtained without assuming the power spectrum or bias parameters in advance

    How round is a protein? Exploring protein structures for globularity using conformal mapping.

    Get PDF
    We present a new algorithm that automatically computes a measure of the geometric difference between the surface of a protein and a round sphere. The algorithm takes as input two triangulated genus zero surfaces representing the protein and the round sphere, respectively, and constructs a discrete conformal map f between these surfaces. The conformal map is chosen to minimize a symmetric elastic energy E S (f) that measures the distance of f from an isometry. We illustrate our approach on a set of basic sample problems and then on a dataset of diverse protein structures. We show first that E S (f) is able to quantify the roundness of the Platonic solids and that for these surfaces it replicates well traditional measures of roundness such as the sphericity. We then demonstrate that the symmetric elastic energy E S (f) captures both global and local differences between two surfaces, showing that our method identifies the presence of protruding regions in protein structures and quantifies how these regions make the shape of a protein deviate from globularity. Based on these results, we show that E S (f) serves as a probe of the limits of the application of conformal mapping to parametrize protein shapes. We identify limitations of the method and discuss its extension to achieving automatic registration of protein structures based on their surface geometry

    Exploring complete positivity in hierarchy equations of motion

    Get PDF
    We derive a purely algebraic framework for the identification of hierarchy equations of motion that induce completely positive dynamics and demonstrate the applicability of our approach with several examples. We find bounds on the violation of complete positivity for microscopically derived hierarchy equations of motion and construct well-behaved phenomenological models with strongly non-Markovian revivals of quantum coherence

    Deformations and Geometric Cosets

    Full text link
    I review some marginal deformations of SU(2) and SL(2,R) Wess-Zumino-Witten models, which are relevant for the investigation of the moduli space of NS5/F1 brane configurations. Particular emphasis is given to the asymmetric deformations, triggered by electric or magnetic fluxes. These exhibit critical values, where the target spaces become exact geometric cosets such as S2 = SU(2)/U(1) or AdS2 = SL(2,R)/U(1)-space. I comment about further generalizations towards the appearance of flag spaces as exact string solutions.Comment: 10 page

    Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning

    Full text link
    We present a sampling-based framework for multi-robot motion planning which combines an implicit representation of a roadmap with a novel approach for pathfinding in geometrically embedded graphs tailored for our setting. Our pathfinding algorithm, discrete-RRT (dRRT), is an adaptation of the celebrated RRT algorithm for the discrete case of a graph, and it enables a rapid exploration of the high-dimensional configuration space by carefully walking through an implicit representation of a tensor product of roadmaps for the individual robots. We demonstrate our approach experimentally on scenarios of up to 60 degrees of freedom where our algorithm is faster by a factor of at least ten when compared to existing algorithms that we are aware of.Comment: Kiril Solovey and Oren Salzman contributed equally to this pape
    corecore