167,071 research outputs found

    A semantic framework for event-driven service composition

    Get PDF
    Title from PDF of title page, viewed on September 14, 2011VitaDissertation advisor: Yugyung LeeIncludes bibliographical references (p. 289-329)Thesis (Ph.D)--School of Computing and Engineering. University of Missouri--Kansas City, 2011Service Oriented Architecture (SOA) has become a popular paradigm for designing distributed systems where loosely coupled services (i.e. computational entities) can be integrated seamlessly to provide complex composite services. Key challenges are discovery of the required services using their formal descriptions and their coherent composition in a timely manner. Most service descriptions are written in XML-based languages that are syntactic, creating linguistic ambiguity during service matchmaking. Furthermore, existing models that implement SOA have mostly middleware-controlled synchronous request/replybased runtime binding of services that incur undesirable service latency. In addition, they impose expensive state monitoring overhead on the middleware. Some newer event-driven models introduce asynchronous publish/subscribe-based event notifications to consumer applications and services. However, they require an event-library that stores definitions of all possible system events, which is impractical in an open and dynamic system. The objective of this study is to efficiently address on-demand consumer requests with minimum service latency and maximum consumer utility. It focuses on semantic eventdriven service composition. For efficient semantic service discovery, the dissertation proposes a novel service learning algorithm called Semantic Taxonomic Clustering (STC). The algorithm utilizes semantic service descriptions to cluster services into functional categories for pruning search space during service discovery and composition. STC utilizes a dynamic bit-encoding algorithm called DL-Encoding that enables linear time bit operationbased semantic matchmaking as compared to expensive reasoner-based semantic matchmaking. The algorithm shows significant improvement in performance and accuracy over some of the important service category algorithms reported in the literature. A novel user-friendly and computationally efficient query model called Desire-based Query Model (DQM) is proposed for formally specifying service queries. STC and DQM serve as the building block for the dual framework that is the core contribution of this dissertation: (i) centralized ALNet (Activity Logic Network) platform and (ii) distributed agentbased SMARTSPACE platform. The former incorporates a middleware controlled service composition algorithm called ALNetComposer while the latter includes the SmartDeal purely distributed composition algorithm. The query response accuracy and performance were evaluated for both the algorithms under simulated event-driven SOA environments. The experimental results show that various environmental parameters, such as domain diversity and scope, size and complexity of the SOA system, and dynamicity of the SOA system, significantly affect accuracy and performance of the proposed model. This dissertation demonstrates that the functionality and scalability of the proposed framework are acceptable for relatively static and domain specific environments as well as large, diverse, and highly dynamic environments. In summary, this dissertation addresses the key design issues and problems in the area of asynchronous and pro-active event-driven service composition.Introduction -- Research background -- Semantic service matchmaking & query modeling -- Service organization by learning service category -- ALNet: event-driven platform for service composition -- SMARTSPACE: distributed multi-agent based event-handeling -- Conclusion & future wor

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverableā€™s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    spChains: A Declarative Framework for Data Stream Processing in Pervasive Applications

    Get PDF
    Pervasive applications rely on increasingly complex streams of sensor data continuously captured from the physical world. Such data is crucial to enable applications to ``understand'' the current context and to infer the right actions to perform, be they fully automatic or involving some user decisions. However, the continuous nature of such streams, the relatively high throughput at which data is generated and the number of sensors usually deployed in the environment, make direct data handling practically unfeasible. Data not only needs to be cleaned, but it must also be filtered and aggregated to relieve higher level algorithms from near real-time handling of such massive data flows. We propose here a stream-processing framework (spChains), based upon state-of-the-art stream processing engines, which enables declarative and modular composition of stream processing chains built atop of a set of extensible stream processing blocks. While stream processing blocks are delivered as a standard, yet extensible, library of application-independent processing elements, chains can be defined by the pervasive application engineering team. We demonstrate the flexibility and effectiveness of the spChains framework on two real-world applications in the energy management and in the industrial plant management domains, by evaluating them on a prototype implementation based on the Esper stream processo

    OpenCL Actors - Adding Data Parallelism to Actor-based Programming with CAF

    Full text link
    The actor model of computation has been designed for a seamless support of concurrency and distribution. However, it remains unspecific about data parallel program flows, while available processing power of modern many core hardware such as graphics processing units (GPUs) or coprocessors increases the relevance of data parallelism for general-purpose computation. In this work, we introduce OpenCL-enabled actors to the C++ Actor Framework (CAF). This offers a high level interface for accessing any OpenCL device without leaving the actor paradigm. The new type of actor is integrated into the runtime environment of CAF and gives rise to transparent message passing in distributed systems on heterogeneous hardware. Following the actor logic in CAF, OpenCL kernels can be composed while encapsulated in C++ actors, hence operate in a multi-stage fashion on data resident at the GPU. Developers are thus enabled to build complex data parallel programs from primitives without leaving the actor paradigm, nor sacrificing performance. Our evaluations on commodity GPUs, an Nvidia TESLA, and an Intel PHI reveal the expected linear scaling behavior when offloading larger workloads. For sub-second duties, the efficiency of offloading was found to largely differ between devices. Moreover, our findings indicate a negligible overhead over programming with the native OpenCL API.Comment: 28 page

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking

    Reconciling a component and process view

    Full text link
    In many cases we need to represent on the same abstraction level not only system components but also processes within the system, and if for both representation different frameworks are used, the system model becomes hard to read and to understand. We suggest a solution how to cover this gap and to reconcile component and process views on system representation: a formal framework that gives the advantage of solving design problems for large-scale component systems.Comment: Preprint, 7th International Workshop on Modeling in Software Engineering (MiSE) at ICSE 201
    • ā€¦
    corecore