13,135 research outputs found

    Static 3D Triangle Mesh Compression Overview

    Get PDF
    3D triangle meshes are extremely used to model discrete surfaces, and almost always represented with two tables: one for geometry and another for connectivity. While the raw size of a triangle mesh is of around 200 bits per vertex, by coding cleverly (and separately) those two distinct kinds of information it is possible to achieve compression ratios of 15:1 or more. Different techniques must be used depending on whether single-rate vs. progressive bitstreams are sought; and, in the latter case, on whether or not hierarchically nested meshes are desirable during reconstructio

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    3D Model compression using Connectivity-Guided Adaptive Wavelet Transform built into 2D SPIHT

    Get PDF
    Cataloged from PDF version of article.Connectivity-Guided Adaptive Wavelet Transform based mesh compression framework is proposed. The transformation uses the connectivity information of the 3D model to exploit the inter-pixel correlations. Orthographic projection is used for converting the 3D mesh into a 2D image-like representation. The proposed conversion method does not change the connectivity among the vertices of the 3D model. There is a correlation between the pixels of the composed image due to the connectivity of the 3D mesh. The proposed wavelet transform uses an adaptive predictor that exploits the connectivity information of the 3D model. Known image compression tools cannot take advantage of the correlations between the samples. The wavelet transformed data is then encoded using a zero-tree wavelet based method. Since the encoder creates a hierarchical bitstream, the proposed technique is a progressive mesh compression technique. Experimental results show that the proposed method has a better rate distortion performance than MPEG-3DGC/MPEG-4 mesh coder. © 2009 Elsevier Inc. All rights reserved

    Crack formation and damage evolution during consolidation in TBM driven tunnel linings in fine-grained soils

    Get PDF
    The paper deals with the numerical modelling of crack formation in segmental tunnel linings. A series of numerical analyses was conducted using the finite difference code FLAC2D. The primary aims of the analyses were to back-analyse the damage pattern observed in a TBM driven hydraulic tunnel excavated in clayey soils and to evaluate the safety level of the excavation assessing the stress and strain state of the lining. The excavation of the tunnel and the lining installation were simulated in plane-strain undrained conditions, adopting the stress reduction method. To take into consideration the peculiar interaction mechanism, identified as the cause the damages, the stress release was differentiated based on the orientation along the tunnel wall. Two distinct modelling strategies were used to model the tunnel lining: at first, simple beam elements were used, then, small continuum elements and cable elements were employed to represent the concrete and the steel bars respectively. The implemented algorithm allowed to simulate explicitly the formation of the cracks and their progressive development. Finally, consolidation analyses were carried out to assess the evolution of the damage and the long-term stress and strain level of the lining. The numerical analyses allowed to reproduce the observed damage pattern and to reliably evaluate the stress and strain state in the damaged lining. Furthermore, the long-term analyses showed that the consolidation process has a beneficial effect as the equalization of the pore pressures causes a reduction of the load eccentricity on the lining, thus progressively increasing the level of safety over time. The investigation of the causes of the reported damage and its numerical modelling allowed to remark the importance of proper tail void grouting when excavating under high cover depths in squeezing soils

    Triangle mesh compression and homological spanning forests

    Get PDF
    Triangle three-dimensional meshes have been widely used to represent 3D objects in several applications. These meshes are usually surfaces that require a huge amount of resources when they are stored, processed or transmitted. Therefore, many algorithms proposing an efficient compression of these meshes have been developed since the early 1990s. In this paper we propose a lossless method that compresses the connectivity of the mesh by using a valence-driven approach. Our algorithm introduces an improvement over the currently available valence-driven methods, being able to deal with triangular surfaces of arbitrary topology and encoding, at the same time, the topological information of the mesh by using Homological Spanning Forests. We plan to develop in the future (geo-topological) image analysis and processing algorithms, that directly work with the compressed data

    Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes

    Full text link
    In this article we present a new class of high order accurate Arbitrary-Eulerian-Lagrangian (ALE) one-step WENO finite volume schemes for solving nonlinear hyperbolic systems of conservation laws on moving two dimensional unstructured triangular meshes. A WENO reconstruction algorithm is used to achieve high order accuracy in space and a high order one-step time discretization is achieved by using the local space-time Galerkin predictor. For that purpose, a new element--local weak formulation of the governing PDE is adopted on moving space--time elements. The space-time basis and test functions are obtained considering Lagrange interpolation polynomials passing through a predefined set of nodes. Moreover, a polynomial mapping defined by the same local space-time basis functions as the weak solution of the PDE is used to map the moving physical space-time element onto a space-time reference element. To maintain algorithmic simplicity, the final ALE one-step finite volume scheme uses moving triangular meshes with straight edges. This is possible in the ALE framework, which allows a local mesh velocity that is different from the local fluid velocity. We present numerical convergence rates for the schemes presented in this paper up to sixth order of accuracy in space and time and show some classical numerical test problems for the two-dimensional Euler equations of compressible gas dynamics.Comment: Accepted by "Communications in Computational Physics

    A novel WebVR-Based lightweight framework for virtual visualization of blood vasculum

    Get PDF
    With the arrival of the Web 2.0 era and the rapid development of virtual reality (VR) technology in recent years, WebVR technology has emerged as the combination of Web 2.0 and VR. Moreover, the concept of “WebVR + medical science”is also proposed to advance medical applications. However, due to the limited storage space and low computing capability of Web browsers, it is difficult to achieve real-time rendering of large-scale medical vascular models on the Web, let alone large-scale vascular animation simulations. The framework proposed in this paper can achieve virtual display of the medical blood vasculum, including lightweight processing of the vasculum and virtual realization of blood flow. This innovative framework presents a simulation algorithm for the virtual blood path based on the Catmull-Rom spline. The mechanisms of progressive compression and online recovery of the lightweight vascular structure are further proposed. The experimental results show that our framework has a shorter browser-side response time than existing methods and achieves efficient real-time simulation
    corecore