302 research outputs found

    A Survey On Cooperative Diversity And Its Applications In Various Wireless Networks

    Full text link

    Analysis Framework for Opportunistic Spectrum OFDMA and its Application to the IEEE 802.22 Standard

    Full text link
    We present an analytical model that enables throughput evaluation of Opportunistic Spectrum Orthogonal Frequency Division Multiple Access (OS-OFDMA) networks. The core feature of the model, based on a discrete time Markov chain, is the consideration of different channel and subchannel allocation strategies under different Primary and Secondary user types, traffic and priority levels. The analytical model also assesses the impact of different spectrum sensing strategies on the throughput of OS-OFDMA network. The analysis applies to the IEEE 802.22 standard, to evaluate the impact of two-stage spectrum sensing strategy and varying temporal activity of wireless microphones on the IEEE 802.22 throughput. Our study suggests that OS-OFDMA with subchannel notching and channel bonding could provide almost ten times higher throughput compared with the design without those options, when the activity and density of wireless microphones is very high. Furthermore, we confirm that OS-OFDMA implementation without subchannel notching, used in the IEEE 802.22, is able to support real-time and non-real-time quality of service classes, provided that wireless microphones temporal activity is moderate (with approximately one wireless microphone per 3,000 inhabitants with light urban population density and short duty cycles). Finally, two-stage spectrum sensing option improves OS-OFDMA throughput, provided that the length of spectrum sensing at every stage is optimized using our model

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Investigating Hastily-Formed Collaborative Networks

    Get PDF
    This research explores both the human and technical aspects of the network centric environment in the context of a major disaster or incident of national significance. The National Incident Management System (NIMS) is viewed by the authors as a social network, and an organizational topology is developed to improve its effectiveness. A rapid Network Deployment Kit (RNDK) using commercial off the shelf (COTS) wireless networking technology is also proposed that facilitates immediate NIMS implementation. The integration of logical and technical analyses forms a comprehensive systems engineering proposal to facilitate collaboration in a net-centric environment. It is envisioned that the methodology used herein to derive and evaluate comprehensive networks proves extendable to other contexts thereby contributing to the netcentric body of knowledge

    Software-Defined Radio Demonstrators: An Example and Future Trends

    Get PDF
    Software-defined radio requires the combination of software-based signal processing and the enabling hardware components. In this paper, we present an overview of the criteria for such platforms and the current state of development and future trends in this area. This paper will also provide details of a high-performance flexible radio platform called the maynooth adaptable radio system (MARS) that was developed to explore the use of software-defined radio concepts in the provision of infrastructure elements in a telecommunications application, such as mobile phone basestations or multimedia broadcasters

    A Trust-Based Relay Selection Approach to the Multi-Hop Network Formation Problem in Cognitive Radio Networks

    Get PDF
    One of the major challenges for today’s wireless communications is to meet the growing demand for supporting an increasing diversity of wireless applications with limited spectrum resource. In cooperative communications and networking, users share resources and collaborate in a distributed approach, similar to entities of active social groups in self organizational communities. Users’ information may be shared by the user and also by the cooperative users, in distributed transmission. Cooperative communications and networking is a fairly new communication paradigm that promises significant capacity and multiplexing gain increase in wireless networks. This research will provide a cooperative relay selection framework that exploits the similarity of cognitive radio networks to social networks. It offers a multi-hop, reputation-based power control game for routing. In this dissertation, a social network model provides a humanistic approach to predicting relay selection and network analysis in cognitive radio networks

    Range estimation in multicarrier systems in the presence of interference: Performance limits and optimal signal design

    Get PDF
    Cataloged from PDF version of article.Theoretical limits on time-of-arrival (equivalently, range) estimation are derived for multicarrier systems in the presence of interference. Specifically, closed-form expressions are obtained for Cramer-Rao bounds (CRBs) in various scenarios. In addition, based on CRB expressions, an optimal power allocation (or, spectrum shaping) strategy is proposed. This strategy considers the constraints not only from the sensed interference level but also from the regulatory emission mask. Numerical results are presented to illustrate the improvements achievable with the optimal power allocation scheme, and a maximum likelihood time-of-arrival estimation algorithm is studied to assess the effects of the proposed approach in practical estimators. © 2011 IEEE

    Spectrally efficient emission mask shaping for OFDM cognitive radios

    Get PDF
    Orthogonal Frequency Division Multiplexing has been widely adopted in recent years due to its inherent spectral efficiency and robustness to impulsive noise and fading. For cognitive radio applications in particular, it can enable flexible and agile spectrum allocation, yet suffers from spectral leakage in the form of large side lobes, leading to inter-channel interference, unless mitigated carefully. Hence, recent OFDM-based standards such as 802.11p for vehicular communication and 802.11af for TV whitespace impose strict spectrum emission mask limits to combat adjacent channel interference. Stricter masks allow channels to operate closer together, improving spectral efficiency at the cost of implementation difficulty. Meeting the strict limits is a significant challenge for implementing both 802.11p and 802.11af, yet remains an important requirement for enabling cost-effective systems. This paper proposes a novel method that embeds baseband filtering within a cognitive radio architecture to meet the specification for the most stringent 802.11p and 802.11af masks, while allowing ten 802.11af sub-carriers to occupy a single basic channel without violating SEM specifications. The proposed method, performed at baseband, relaxes otherwise strict RF filter requirements, allowing the RF subsystem to be implemented using much less stringent 802.11a designs, allowing cost reductions
    • …
    corecore