5,745 research outputs found

    Non-adaptive Measurement-based Quantum Computation and Multi-party Bell Inequalities

    Full text link
    Quantum correlations exhibit behaviour that cannot be resolved with a local hidden variable picture of the world. In quantum information, they are also used as resources for information processing tasks, such as Measurement-based Quantum Computation (MQC). In MQC, universal quantum computation can be achieved via adaptive measurements on a suitable entangled resource state. In this paper, we look at a version of MQC in which we remove the adaptivity of measurements and aim to understand what computational abilities still remain in the resource. We show that there are explicit connections between this model of computation and the question of non-classicality in quantum correlations. We demonstrate this by focussing on deterministic computation of Boolean functions, in which natural generalisations of the Greenberger-Horne-Zeilinger (GHZ) paradox emerge; we then explore probabilistic computation, via which multipartite Bell Inequalities can be defined. We use this correspondence to define families of multi-party Bell inequalities, which we show to have a number of interesting contrasting properties.Comment: 13 pages, 4 figures, final version accepted for publicatio

    Blending under deconstruction

    Get PDF
    n/

    On the dynamics of initially correlated open quantum systems: theory and applications

    Full text link
    We show that the dynamics of any open quantum system that is initially correlated with its environment can be described by a set of (or less) completely positive maps, where d is the dimension of the system. Only one such map is required for the special case of no initial correlations. The same maps describe the dynamics of any system-environment state obtained from the initial state by a local operation on the system. The reduction of the system dynamics to a set of completely positive maps allows known numerical and analytic tools for uncorrelated initial states to be applied to the general case of initially correlated states, which we exemplify by solving the qubit dephasing model for such states, and provides a natural approach to quantum Markovianity for this case. We show that this set of completely positive maps can be experimentally characterised using only local operations on the system, via a generalisation of noise spectroscopy protocols. As further applications, we first consider the problem of retrodicting the dynamics of an open quantum system which is in an arbitrary state when it becomes accessible to the experimenter, and explore the conditions under which retrodiction is possible. We also introduce a related one-sided or limited-access tomography protocol for determining an arbitrary bipartite state, evolving under a sufficiently rich Hamiltonian, via local operations and measurements on just one component. We simulate this protocol for a physical model of particular relevance to nitrogen-vacancy centres, and in particular show how to reconstruct the density matrix of a set of three qubits, interacting via dipolar coupling and in the presence of local magnetic fields, by measuring and controlling only one of them.Comment: 19 pages. Comments welcom

    Automatic acquisition of Spanish LFG resources from the Cast3LB treebank

    Get PDF
    In this paper, we describe the automatic annotation of the Cast3LB Treebank with LFG f-structures for the subsequent extraction of Spanish probabilistic grammar and lexical resources. We adapt the approach and methodology of Cahill et al. (2004), Oā€™Donovan et al. (2004) and elsewhere for English to Spanish and the Cast3LB treebank encoding. We report on the quality and coverage of the automatic f-structure annotation. Following the pipeline and integrated models of Cahill et al. (2004), we extract wide-coverage probabilistic LFG approximations and parse unseen Spanish text into f-structures. We also extend Bikelā€™s (2002) Multilingual Parse Engine to include a Spanish language module. Using the retrained Bikel parser in the pipeline model gives the best results against a manually constructed gold standard (73.20% predsonly f-score). We also extract Spanish lexical resources: 4090 semantic form types with 98 frame types. Subcategorised prepositions and particles are included in the frames

    Inductive learning spatial attention

    Get PDF
    This paper investigates the automatic induction of spatial attention from the visual observation of objects manipulated on a table top. In this work, space is represented in terms of a novel observer-object relative reference system, named Local Cardinal System, defined upon the local neighbourhood of objects on the table. We present results of applying the proposed methodology on five distinct scenarios involving the construction of spatial patterns of coloured blocks

    Vagueness and referential ambiguity in a large-scale annotated corpus

    Get PDF
    In this paper, we argue that difficulties in the definition of coreference itself contribute to lower inter-annotator agreement in certain cases. Data from a large referentially annotated corpus serves to corroborate this point, using a quantitative investigation to assess which effects or problems are likely to be the most prominent. Several examples where such problems occur are discussed in more detail, and we then propose a generalisation of Poesio, Reyle and Stevensonā€™s Justified Sloppiness Hypothesis to provide a unified model for these cases of disagreement and argue that a deeper understanding of the phenomena involved allows to tackle problematic cases in a more principled fashion than would be possible using only pre-theoretic intuitions

    Elliptic solutions of generalized Brans-Dicke gravity with a non-universal coupling

    Full text link
    We study a model of the generalized Brans-Dicke gravity presented in both the Jordan and in the Einstein frames, which are conformally related. We show that the scalar field equations in the Einstein frame are reduced to the geodesics equations on the target space of the nonlinear sigma-model. The analytical solutions in elliptical functions are obtained when the conformal couplings are given by reciprocal exponential functions. The behavior of the scale factor in the Jordan frame is studied using numerical computations. For certain parameters the solutions can describe an accelerated expansion. We also derive an analytical approximation in exponential functions.Comment: 24 pages, 3 figures; v2: typos fixed, few remarks and references added; version to appear in EPJ

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering
    • ā€¦
    corecore