229 research outputs found

    A New Digital Watermarking Algorithm Using Combination of Least Significant Bit (LSB) and Inverse Bit

    Full text link
    In this paper, we introduce a new digital watermarking algorithm using least significant bit (LSB). LSB is used because of its little effect on the image. This new algorithm is using LSB by inversing the binary values of the watermark text and shifting the watermark according to the odd or even number of pixel coordinates of image before embedding the watermark. The proposed algorithm is flexible depending on the length of the watermark text. If the length of the watermark text is more than ((MxN)/8)-2 the proposed algorithm will also embed the extra of the watermark text in the second LSB. We compare our proposed algorithm with the 1-LSB algorithm and Lee's algorithm using Peak signal-to-noise ratio (PSNR). This new algorithm improved its quality of the watermarked image. We also attack the watermarked image by using cropping and adding noise and we got good results as well.Comment: 8 pages, 6 figures and 4 tables; Journal of Computing, Volume 3, Issue 4, April 2011, ISSN 2151-961

    Mobile-based Telemedicine Application using SVD and F-XoR Watermarking for Medical Images

    Get PDF
    منصة الخدمات الطبية عبارة عن تطبيق متنقل يتم من خلاله تزويد المرضى بتشخيصات الأطباء بناءً على المعلومات المستقاة من الصور الطبية. يجب ألا يتم تبديل محتوى هذه النتائج التشخيصية بشكل غير قانوني أثناء النقل ويجب إعادته إلى المريض الصحيح. في هذه المقالة، نقدم حلاً لهذه المشكلات باستخدام علامة مائية عمياء وقابلة للانعكاس وهشة استنادًا إلى مصادقة صورة المضيف. في الخوارزمية المقترحة، يتم استخدام الإصدار الثنائي من ترميز بوس_شوهوري _هوكوينجهام (BCH) للتقرير الطبي للمريض (PMR) والصورة الطبية الثنائية للمريض (PMI) بعد استخدام الغامض الحصري أو (F-XoR) لإنتاج العلامة الفريدة للمريض باستخدام مخطط المشاركة السرية (SSS). يتم استخدامه لاحقًا كعلامة مائية ليتم تضمينها في مضيف (PMI) باستخدام خوارزمية تحليل القيمة المفرد (SVD) العمياء القائمة على العلامة المائية. وهو حل جديد اقترحناه أيضًا بتطبيق SVD على صورة العلامة المائية العمياء. تحافظ الخوارزمية الخاصة بنا على مصادقة محتوى (PMI) أثناء النقل وملكية (PMR) للمريض لنقل التشخيص المصاحب فيما بعد إلى المريض الصحيح عبر تطبيق التطبيب عن بعد المحمول. يستخدم تقييم الخوارزمية لدينا علامات مائية مسترجعة توضح النتائج الواعدة لمقاييس الأداء العالية مقارنتا مع نتائج الاعمال السابقة في مقاييس الكشف عن التزوير وإمكانية الاسترداد الذاتي، مع قيمة 30NB PSNR، قيمة NC هي 0.99.A medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s unique mark is used later as a watermark to be embedded into host PMI using blind watermarking-based singular value decomposition (SVD) algorithm. This is a new solution that we also proposed to applying SVD into a blind watermarking image. Our algorithm preserves PMI content authentication during the transmission and PMR ownership to the patient for subsequently transmitting associated diagnosis to the correct patient via a mobile telemedicine application. The performance of experimental results is high compare to previous results, uses recovered watermarks demonstrating promising results in the tamper detection metrics and self-recovery capability, with 30db PSNR, NC value is 0.99

    Secure and Robust Fragile Watermarking Scheme for Medical Images

    Get PDF
    Over the past decade advances in computer-based communication and health services, the need for image security becomes urgent to address the requirements of both safety and non-safety in medical applications. This paper proposes a new fragile watermarking based scheme for image authentication and self-recovery for medical applications. The proposed scheme locates image tampering as well as recovers the original image. A host image is broken into 4×4 blocks and Singular Value Decomposition (SVD) is applied by inserting the traces of block wise SVD into the Least Significant Bit (LSB) of the image pixels to figure out the transformation in the original image. Two authentication bits namely block authentication and self-recovery bits were used to survive the vector quantization attack. The insertion of self-recovery bits is determined with Arnold transformation, which recovers the original image even after a high tampering rate. SVD-based watermarking information improves the image authentication and provides a way to detect different attacked area. The proposed scheme is tested against different types of attacks such are text removal attack, text insertion attack, and copy and paste attack

    Fragile watermarking for image authentication using dyadic walsh ordering

    Get PDF
    A digital image is subjected to the most manipulation. This is driven by the easy manipulating process through image editing software which is growing rapidly. These problems can be solved through the watermarking model as an active authentication system for the image. One of the most popular methods is Singular Value Decomposition (SVD) which has good imperceptibility and detection capabilities. Nevertheless, SVD has high complexity and can only utilize one singular matrix S, and ignore two orthogonal matrices. This paper proposes the use of the Walsh matrix with dyadic ordering to generate a new S matrix without the orthogonal matrices. The experimental results showed that the proposed method was able to reduce computational time by 22% and 13% compared to the SVD-based method and similar methods based on the Hadamard matrix respectively. This research can be used as a reference to speed up the computing time of the watermarking methods without compromising the level of imperceptibility and authentication

    A dual adaptive watermarking scheme in contourlet domain for DICOM images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nowadays, medical imaging equipments produce digital form of medical images. In a modern health care environment, new systems such as PACS (picture archiving and communication systems), use the digital form of medical image too. The digital form of medical images has lots of advantages over its analog form such as ease in storage and transmission. Medical images in digital form must be stored in a secured environment to preserve patient privacy. It is also important to detect modifications on the image. These objectives are obtained by watermarking in medical image.</p> <p>Methods</p> <p>In this paper, we present a dual and oblivious (blind) watermarking scheme in the contourlet domain. Because of importance of ROI (region of interest) in interpretation by medical doctors rather than RONI (region of non-interest), we propose an adaptive dual watermarking scheme with different embedding strength in ROI and RONI. We embed watermark bits in singular value vectors of the embedded blocks within lowpass subband in contourlet domain.</p> <p>Results</p> <p>The values of PSNR (peak signal-to-noise ratio) and SSIM (structural similarity measure) index of ROI for proposed DICOM (digital imaging and communications in medicine) images in this paper are respectively larger than 64 and 0.997. These values confirm that our algorithm has good transparency. Because of different embedding strength, BER (bit error rate) values of signature watermark are less than BER values of caption watermark. Our results show that watermarked images in contourlet domain have greater robustness against attacks than wavelet domain. In addition, the qualitative analysis of our method shows it has good invisibility.</p> <p>Conclusions</p> <p>The proposed contourlet-based watermarking algorithm in this paper uses an automatically selection for ROI and embeds the watermark in the singular values of contourlet subbands that makes the algorithm more efficient, and robust against noise attacks than other transform domains. The embedded watermark bits can be extracted without the original image, the proposed method has high PSNR and SSIM, and the watermarked image has high transparency and can still conform to the DICOM format.</p

    An Efficient Digital Image Watermarking Based on DCT and Advanced Image Data Embedding Method

    Get PDF
    Digital image enhancement and digital content or data image secure using DCT and advanced image data embedding method (AIDEM). AIDEM improved robustness based on particle shifting concept is reproduced secure image data and manipulated there’s a robust would like for a digital image copyright mechanism to be placed in secure image data. There’s a necessity for authentication of the content because of the owner. It’s become more accessible for malicious parties to create scalable copies of proprietary content with any compensation to the content owner. Advanced Watermarking is being viewed as a potential goal to the current downside. Astounding watermarking plans are arranged assaults on the watermarked picture are twisted and proposed to give insurance of proprietorship freedoms, information treating, and information uprightness. These methods guarantee unique information recuperation from watermarked information, while irreversible watermarking plans safeguard proprietorship freedoms. This attribute of reversible watermarking has arisen as an applicant answer for the assurance of proprietorship freedoms of information, unfortunate to alterations, for example, clinical information, genetic information, Visa, and financial balance information. These attacks are also intentional or unintentional. The attacks are classified as geometric attacks. This research presents a comprehensive and old method of these techniques that are developed and their effectiveness. Digital watermarking was developed to supply copyright protection and owners’ authentication. Digital image watermarking may be a methodology for embedding some information into digital image sequences, like text image, image data, during this research analysis on image watermarking and attacks on watermarking process time image data, classification of watermarking and applications. We aim to secure image data using advanced image data embedding method (AIDEM) improved robustness based particle shifting concept is reproduced secure image data. To develop compelling digital image watermarking methodology using mat lab tool and reliable and robust
    corecore