591 research outputs found

    List decoding Reed-Muller codes over small fields

    Full text link
    The list decoding problem for a code asks for the maximal radius up to which any ball of that radius contains only a constant number of codewords. The list decoding radius is not well understood even for well studied codes, like Reed-Solomon or Reed-Muller codes. Fix a finite field F\mathbb{F}. The Reed-Muller code RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d) is defined by nn-variate degree-dd polynomials over F\mathbb{F}. In this work, we study the list decoding radius of Reed-Muller codes over a constant prime field F=Fp\mathbb{F}=\mathbb{F}_p, constant degree dd and large nn. We show that the list decoding radius is equal to the minimal distance of the code. That is, if we denote by δ(d)\delta(d) the normalized minimal distance of RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d), then the number of codewords in any ball of radius δ(d)ε\delta(d)-\varepsilon is bounded by c=c(p,d,ε)c=c(p,d,\varepsilon) independent of nn. This resolves a conjecture of Gopalan-Klivans-Zuckerman [STOC 2008], who among other results proved it in the special case of F=F2\mathbb{F}=\mathbb{F}_2; and extends the work of Gopalan [FOCS 2010] who proved the conjecture in the case of d=2d=2. We also analyse the number of codewords in balls of radius exceeding the minimal distance of the code. For ede \leq d, we show that the number of codewords of RMF(n,d)\mathrm{RM}_{\mathbb{F}}(n,d) in a ball of radius δ(e)ε\delta(e) - \varepsilon is bounded by exp(cnde)\exp(c \cdot n^{d-e}), where c=c(p,d,ε)c=c(p,d,\varepsilon) is independent of nn. The dependence on nn is tight. This extends the work of Kaufman-Lovett-Porat [IEEE Inf. Theory 2012] who proved similar bounds over F2\mathbb{F}_2. The proof relies on several new ingredients: an extension of the Frieze-Kannan weak regularity to general function spaces, higher-order Fourier analysis, and an extension of the Schwartz-Zippel lemma to compositions of polynomials.Comment: fixed a bug in the proof of claim 5.6 (now lemma 5.5

    Efficient Multi-Point Local Decoding of Reed-Muller Codes via Interleaved Codex

    Get PDF
    Reed-Muller codes are among the most important classes of locally correctable codes. Currently local decoding of Reed-Muller codes is based on decoding on lines or quadratic curves to recover one single coordinate. To recover multiple coordinates simultaneously, the naive way is to repeat the local decoding for recovery of a single coordinate. This decoding algorithm might be more expensive, i.e., require higher query complexity. In this paper, we focus on Reed-Muller codes with usual parameter regime, namely, the total degree of evaluation polynomials is d=Θ(q)d=\Theta({q}), where qq is the code alphabet size (in fact, dd can be as big as q/4q/4 in our setting). By introducing a novel variation of codex, i.e., interleaved codex (the concept of codex has been used for arithmetic secret sharing \cite{C11,CCX12}), we are able to locally recover arbitrarily large number kk of coordinates of a Reed-Muller code simultaneously at the cost of querying O(q2k)O(q^2k) coordinates. It turns out that our local decoding of Reed-Muller codes shows ({\it perhaps surprisingly}) that accessing kk locations is in fact cheaper than repeating the procedure for accessing a single location for kk times. Our estimation of success error probability is based on error probability bound for tt-wise linearly independent variables given in \cite{BR94}

    On Higher-Order Fourier Analysis over Non-Prime Fields

    Get PDF
    The celebrated Weil bound for character sums says that for any low-degree polynomial P and any additive character chi, either chi(P) is a constant function or it is distributed close to uniform. The goal of higher-order Fourier analysis is to understand the connection between the algebraic and analytic properties of polynomials (and functions, generally) at a more detailed level. For instance, what is the tradeoff between the equidistribution of chi(P) and its "structure"? Previously, most of the work in this area was over fields of prime order. We extend the tools of higher-order Fourier analysis to analyze functions over general finite fields. Let K be a field extension of a prime finite field F_p. Our technical results are: 1. If P: K^n -> K is a polynomial of degree |K|^{-s} for some s > 0 and non-trivial additive character chi, then P is a function of O_{d, s}(1) many non-classical polynomials of weight degree < d. The definition of non-classical polynomials over non-prime fields is one of the contributions of this work. 2. Suppose K and F are of bounded order, and let H be an affine subspace of K^n. Then, if P: K^n -> K is a polynomial of degree d that is sufficiently regular, then (P(x): x in H) is distributed almost as uniformly as possible subject to constraints imposed by the degree of P. Such a theorem was previously known for H an affine subspace over a prime field. The tools of higher-order Fourier analysis have found use in different areas of computer science, including list decoding, algorithmic decomposition and testing. Using our new results, we revisit some of these areas. (i) For any fixed finite field K, we show that the list decoding radius of the generalized Reed Muller code over K equals the minimum distance of the code. (ii) For any fixed finite field K, we give a polynomial time algorithm to decide whether a given polynomial P: K^n -> K can be decomposed as a particular composition of lesser degree polynomials. (iii) For any fixed finite field K, we prove that all locally characterized affine-invariant properties of functions f: K^n -> K are testable with one-sided error

    List decoding group homomorphisms between supersolvable groups

    Get PDF
    We show that the set of homomorphisms between two supersolvable groups can be locally list decoded up to the minimum distance of the code, extending the results of Dinur et al who studied the case where the groups are abelian. Moreover, when specialized to the abelian case, our proof is more streamlined and gives a better constant in the exponent of the list size. The constant is improved from about 3.5 million to 105.Comment: 11 page

    Group homomorphisms as error correcting codes

    Get PDF
    We investigate the minimum distance of the error correcting code formed by the homomorphisms between two finite groups GG and HH. We prove some general structural results on how the distance behaves with respect to natural group operations, such as passing to subgroups and quotients, and taking products. Our main result is a general formula for the distance when GG is solvable or HH is nilpotent, in terms of the normal subgroup structure of GG as well as the prime divisors of G|G| and H|H|. In particular, we show that in the above case, the distance is independent of the subgroup structure of HH. We complement this by showing that, in general, the distance depends on the subgroup structure GG.Comment: 13 page
    corecore