20 research outputs found

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    Mixed unit interval graphs

    Get PDF
    AbstractThe class of intersection graphs of unit intervals of the real line whose ends may be open or closed is a strict superclass of the well-known class of unit interval graphs. We pose a conjecture concerning characterizations of such mixed unit interval graphs, verify parts of it in general, and prove it completely for diamond-free graphs. In particular, we characterize diamond-free mixed unit interval graphs by means of an infinite family of forbidden induced subgraphs, and we show that a diamond-free graph is mixed unit interval if and only if it has intersection representations using unit intervals such that all ends of the intervals are integral

    A Simple Linear Time LexBFS Cograph Recognition Algorithm

    Full text link
    International audienceThis paper introduces a new simple linear time algorithm to recognize cographs (graphs without an induced P 4). Unlike other cograph recognition algorithms, the new algorithm uses a multisweep Lexicographic Breadth First Search (LexBFS) approach, and introduces a new variant of LexBFS, called LexBFS−, operating on the complement of the given graph G and breaking ties with respect to an initial LexBFS. The algorithm either produces the cotree of G or identifies an induced P 4
    corecore