61 research outputs found

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The non-linear binary Kerdock codes are known to be Gray images of certain extended cyclic codes of length N=2mN = 2^m over Z4\mathbb{Z}_4. We show that exponentiating these Z4\mathbb{Z}_4-valued codewords by ı≜−1\imath \triangleq \sqrt{-1} produces stabilizer states, that are quantum states obtained using only Clifford unitaries. These states are also the common eigenvectors of commuting Hermitian matrices forming maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the derivation of the classical weight distribution of Kerdock codes. Next, we organize the stabilizer states to form N+1N+1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute their corresponding MCS, thereby forming a subgroup of the Clifford group. When represented as symplectic matrices, this subgroup is isomorphic to the projective special linear group PSL(2,N2,N). We show that this automorphism group acts transitively on the Pauli matrices, which implies that the ensemble is Pauli mixing and hence forms a unitary 22-design. The Kerdock design described here was originally discovered by Cleve et al. (arXiv:1501.04592), but the connection to classical codes is new which simplifies its description and translation to circuits significantly. Sampling from the design is straightforward, the translation to circuits uses only Clifford gates, and the process does not require ancillary qubits. Finally, we also develop algorithms for optimizing the synthesis of unitary 22-designs on encoded qubits, i.e., to construct logical unitary 22-designs. Software implementations are available at https://github.com/nrenga/symplectic-arxiv18a, which we use to provide empirical gate complexities for up to 1616 qubits.Comment: 16 pages double-column, 4 figures, and some circuits. Accepted to 2019 Intl. Symp. Inf. Theory (ISIT), and PDF of the 5-page ISIT version is included in the arXiv packag

    List decoding of noisy Reed-Muller-like codes

    Full text link
    First- and second-order Reed-Muller (RM(1) and RM(2), respectively) codes are two fundamental error-correcting codes which arise in communication as well as in probabilistically-checkable proofs and learning. In this paper, we take the first steps toward extending the quick randomized decoding tools of RM(1) into the realm of quadratic binary and, equivalently, Z_4 codes. Our main algorithmic result is an extension of the RM(1) techniques from Goldreich-Levin and Kushilevitz-Mansour algorithms to the Hankel code, a code between RM(1) and RM(2). That is, given signal s of length N, we find a list that is a superset of all Hankel codewords phi with dot product to s at least (1/sqrt(k)) times the norm of s, in time polynomial in k and log(N). We also give a new and simple formulation of a known Kerdock code as a subcode of the Hankel code. As a corollary, we can list-decode Kerdock, too. Also, we get a quick algorithm for finding a sparse Kerdock approximation. That is, for k small compared with 1/sqrt{N} and for epsilon > 0, we find, in time polynomial in (k log(N)/epsilon), a k-Kerdock-term approximation s~ to s with Euclidean error at most the factor (1+epsilon+O(k^2/sqrt{N})) times that of the best such approximation

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The binary non-linear Kerdock codes are Gray images of â„€_4-linear Kerdock codes of length N =2^m . We show that exponentiating ı=−√-1 by these â„€_4-valued codewords produces stabilizer states, which are the common eigenvectors of maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the proof of the classical weight distribution of Kerdock codes. Next, we partition stabilizer states into N +1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute the associated MCS. This automorphism group, represented as symplectic matrices, is isomorphic to the projective special linear group PSL(2,N) and forms a unitary 2-design. The design described here was originally discovered by Cleve et al. (2016), but the connection to classical codes is new. This significantly simplifies the description of the design and its translation to circuits

    Equiangular lines, mutually unbiased bases, and spin models

    Get PDF
    We use difference sets to construct interesting sets of lines in complex space. Using (v,k,1)-difference sets, we obtain k^2-k+1 equiangular lines in C^k when k-1 is a prime power. Using semiregular relative difference sets with parameters (k,n,k,l) we construct sets of n+1 mutually unbiased bases in C^k. We show how to construct these difference sets from commutative semifields and that several known maximal sets of mutually unbiased bases can be obtained in this way, resolving a conjecture about the monomiality of maximal sets. We also relate mutually unbiased bases to spin models.Comment: 23 pages; no figures. Minor correction as pointed out in arxiv.org:1104.337

    A Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements

    Full text link
    The basic methods of constructing the sets of mutually unbiased bases in the Hilbert space of an arbitrary finite dimension are discussed and an emerging link between them is outlined. It is shown that these methods employ a wide range of important mathematical concepts like, e.g., Fourier transforms, Galois fields and rings, finite and related projective geometries, and entanglement, to mention a few. Some applications of the theory to quantum information tasks are also mentioned.Comment: 20 pages, 1 figure to appear in Foundations of Physics, Nov. 2006 two more references adde

    The invariants of the Clifford groups

    Get PDF
    The automorphism group of the Barnes-Wall lattice L_m in dimension 2^m (m not 3) is a subgroup of index 2 in a certain ``Clifford group'' C_m (an extraspecial group of order 2^(1+2m) extended by an orthogonal group). This group and its complex analogue CC_m have arisen in recent years in connection with the construction of orthogonal spreads, Kerdock sets, packings in Grassmannian spaces, quantum codes, Siegel modular forms and spherical designs. In this paper we give a simpler proof of Runge's 1996 result that the space of invariants for C_m of degree 2k is spanned by the complete weight enumerators of the codes obtained by tensoring binary self-dual codes of length 2k with the field GF(2^m); these are a basis if m >= k-1. We also give new constructions for L_m and C_m: let M be the Z[sqrt(2)]-lattice with Gram matrix [2, sqrt(2); sqrt(2), 2]. Then L_m is the rational part of the mth tensor power of M, and C_m is the automorphism group of this tensor power. Also, if C is a binary self-dual code not generated by vectors of weight 2, then C_m is precisely the automorphism group of the complete weight enumerator of the tensor product of C and GF(2^m). There are analogues of all these results for the complex group CC_m, with ``doubly-even self-dual code'' instead of ``self-dual code''.Comment: Latex, 24 pages. Many small improvement
    • 

    corecore