87 research outputs found

    Interactive digital art

    Get PDF
    In this paper, we present DNArt in general, our work in DNArt’s lab including a detailed presentation of the first artwork that has come out of our lab in September 2011, entitled “ENCOUNTERS #3”, and the use of DNArt for digital art conservation. Research into the use of DNArt for digital art conservation is currently conducted by the Netherlands Institute for Media art (Nederlands Instituut voor Mediakunst, NIMk). The paper describes this research and presents preliminary results. At the end, it will offer the reader the possibility to participate in DNArt’s development

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Time-Sensitive Networking for Industrial Automation: Challenges, Opportunities, and Directions

    Full text link
    With the introduction of Cyber-Physical Systems (CPS) and Internet of Things (IoT) into industrial applications, industrial automation is undergoing tremendous change, especially with regard to improving efficiency and reducing the cost of products. Industrial automation applications are often required to transmit time- and safety-critical data to monitor and control industrial processes, especially for critical control systems. There are a number of solutions to meet these requirements (e.g., priority-based real-time schedules and closed-loop feedback control systems). However, due to their different processing capabilities (e.g., in the end devices and network switches), different vendors may come out with distinct solutions, and this makes the large-scale integration of devices from different vendors difficult or impossible. IEEE 802.1 Time-Sensitive Networking (TSN) is a standardization group formed to enhance and optimize the IEEE 802.1 network standards, especially for Ethernet-based networks. These solutions can be evolved and adapted into a cross-industry scenario, such as a large-scale distributed industrial plant, which requires multiple industrial entities working collaboratively. This paper provides a comprehensive review on the current advances in TSN standards for industrial automation. We present the state-of-the-art IEEE TSN standards and discuss the opportunities and challenges when integrating each protocol into the industry domains. Finally, we discuss some promising research about applying the TSN technology to industrial automation applications

    Delay analysis and time-critical protocol design for in-vehicle power line communication systems

    Get PDF
    With the emerging automated tasks in vehicle domain, the development of in-vehicle communications is increasingly important and subjected to new applications. The use of vehicular power lines has been a promising alternative to invehicle communications because of elimination of extra data cables. In this paper, we focus on the latest HomePlug Green PHY (HPGP) and explore its opportunity to support timecritical in-vehicle applications. Specifically, we apply Network Calculus to evaluate the worst access and queuing delay of various priority flows in vehicle bus networks. In order to maximize the bandwidth utility and satisfy the end-to-end hard delay requirements, we further propose a bandwidth efficient fair rate scheduling and delay sensitive traffic shaper. Performance evaluation supplemented by numerical and simulation results is also provided to show the advantage of HPGP and the proposed traffic shaper over the existing industry solutions

    Quantitative Performance Comparison of Various Traffic Shapers in Time-Sensitive Networking

    Full text link
    Owning to the sub-standards being developed by IEEE Time-Sensitive Networking (TSN) Task Group, the traditional IEEE 802.1 Ethernet is enhanced to support real-time dependable communications for future time- and safety-critical applications. Several sub-standards have been recently proposed that introduce various traffic shapers (e.g., Time-Aware Shaper (TAS), Asynchronous Traffic Shaper (ATS), Credit-Based Shaper (CBS), Strict Priority (SP)) for flow control mechanisms of queuing and scheduling, targeting different application requirements. These shapers can be used in isolation or in combination and there is limited work that analyzes, evaluates and compares their performance, which makes it challenging for end-users to choose the right combination for their applications. This paper aims at (i) quantitatively comparing various traffic shapers and their combinations, (ii) summarizing, classifying and extending the architectures of individual and combined traffic shapers and their Network calculus (NC)-based performance analysis methods and (iii) filling the gap in the timing analysis research on handling two novel hybrid architectures of combined traffic shapers, i.e., TAS+ATS+SP and TAS+ATS+CBS. A large number of experiments, using both synthetic and realistic test cases, are carried out for quantitative performance comparisons of various individual and combined traffic shapers, from the perspective of upper bounds of delay, backlog and jitter. To the best of our knowledge, we are the first to quantitatively compare the performance of the main traffic shapers in TSN. The paper aims at supporting the researchers and practitioners in the selection of suitable TSN sub-protocols for their use cases

    TSN-Based Automotive E/E Architecture

    Get PDF
    Time-Sensitive Networking, also known as TSN, is a deterministic network based on traditional Ethernet. It offers a bunch of standards or profiles specified by IEEE 802.1 task group which has been evolved from the former IEEE802.1 Audio Video Bridging task group. In Automotive Industry, especially in ADAS domain, TSN backbone communication will gradually merge with or even replace the traditional in-vechile communication like CAN/CANFD/LIN/MOST/FlexRay due to below properties, it plays a key bridge role in heterogeneous SOC communication network

    Evaluation of IEEE 802.1 Time Sensitive Networking Performance for Microgrid and Smart Grid Power System Applications

    Get PDF
    Proliferation of distributed energy resources and the importance of smart energy management has led to increased interest in microgrids. A microgrid is an area of the grid that can be disconnected and operated independently from the main grid when required and can generate some or all of its own energy needs with distributed energy resources and battery storage. This allows for the microgrid area to continue operating even when the main grid is unavailable. In addition, often a microgrid can utilize waste heat from energy generation to drive thermal loads, further improving energy utilization. This leads to increased reliability and overall efficiency in the microgrid area.As microgrids (and by extension the smart grid) become more widespread, new methods of communication and control are required to aid in management of many different distributed entities. One such communication architecture that may prove useful is the set of IEEE 802.1 Time Sensitive Networking (TSN) standards. These standards specify improvements and new capabilities for LAN based communication networks that previously made them unsuitable for widespread deployment in a power system setting. These standards include specifications for low latency guarantees, clock synchronization, data frame redundancy, and centralized system administration. These capabilities were previously available on proprietary or application specific solutions. However, they will now be available as part of the Ethernet standard, enabling backwards compatibility with existing network architecture and support with future advances.Two of the featured standards, IEEE 802.1AS (governing time-synchronization) and IEEE 802.1Qbv (governing time aware traffic shaping), will be tested and evaluated for their potential utility in power systems and microgrid applications. These tests will measure the latency achievable using TSN over a network at various levels of congestion and compare these results with UDP and TCP protocols. In addition, the ability to use synchronized clocks to generate waveforms for microgrid inverter synchronization will be explored

    Tunneling Horizontal IEC 61850 Traffic through Audio Video Bridging Streams for Flexible Microgrid Control and Protection

    Get PDF
    In this paper, it is argued that some low-level aspects of the usual IEC 61850 mapping to Ethernet are not well suited to microgrids due to their dynamic nature and geographical distribution as compared to substations. It is proposed that the integration of IEEE time-sensitive networking (TSN) concepts (which are currently implemented as audio video bridging (AVB) technologies) within an IEC 61850 / Manufacturing Message Specification framework provides a flexible and reconfigurable platform capable of overcoming such issues. A prototype test platform and bump-in-the-wire device for tunneling horizontal traffic through AVB are described. Experimental results are presented for sending IEC 61850 GOOSE (generic object oriented substation events) and SV (sampled values) messages through AVB tunnels. The obtained results verify that IEC 61850 event and sampled data may be reliably transported within the proposed framework with very low latency, even over a congested network. It is argued that since AVB streams can be flexibly configured from one or more central locations, and bandwidth reserved for their data ensuring predictability of delivery, this gives a solution which seems significantly more reliable than a pure MMS-based solution
    • …
    corecore