6,534 research outputs found

    Statistical mechanics on isoradial graphs

    Get PDF
    Isoradial graphs are a natural generalization of regular graphs which give, for many models of statistical mechanics, the right framework for studying models at criticality. In this survey paper, we first explain how isoradial graphs naturally arise in two approaches used by physicists: transfer matrices and conformal field theory. This leads us to the fact that isoradial graphs provide a natural setting for discrete complex analysis, to which we dedicate one section. Then, we give an overview of explicit results obtained for different models of statistical mechanics defined on such graphs: the critical dimer model when the underlying graph is bipartite, the 2-dimensional critical Ising model, random walk and spanning trees and the q-state Potts model.Comment: 22 page

    All solution graphs in multidimensional screening

    Get PDF
    We study general discrete-types multidimensional screening without any noticeable restrictions on valuations, using instead epsilon-relaxation of the incentive-compatibility constraints. Any active (becoming equality) constraint can be perceived as "envy" arc from one type to another, so the set of active constraints is a digraph. We find that: (1) any solution has an in-rooted acyclic graph ("river"); (2) for any logically feasible river there exists a screening problem resulting in such river. Using these results, any solution is characterized both through its spanning-tree and through its Lagrange multipliers, that can help in finding solutions and their efficiency/distortion properties.incentive compatibility; multidimensional screening; second-degree price discrimination; non-linear pricing; graphs
    corecore