22,971 research outputs found

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    Performance measurement in the public sector: some theoretical and practical reflections

    Get PDF
    Performance measurement innovation in the public sector has been gaining a great deal of interest among academics, practitioners and policy makers since the implementation of the New Public Management reforms. The aim of this paper is to contribute to the current debate on the topic through the study of the conditions and factors that may hinder or foster the introduction of performance measurement systems, such as the Balanced Scorecard (BSC). The results derive from two longitudinal studies conducted in two Italian public administrations, which introduced the BSC device. The empirical evidences are discussed through the Ferreira and Otley’s (2009) framework, as extended by Broadbent and Laughlin (2009). The paper tries to contribute to both the extant literature on the BSC device and the usefulness of the extended conceptual framework in an empirical context.performance measurement; public sector; balanced scorecard

    CODEWEAVE: exploring fine-grained mobility of code

    Get PDF
    This paper is concerned with an abstract exploration of code mobility constructs designed for use in settings where the level of granularity associated with the mobile units exhibits significant variability. Units of mobility that are both finer and coarser grained than the unit of execution are examined. To accomplish this, we take the extreme view that every line of code and every variable declaration are potentially mobile, i.e., it may be duplicated or moved from one program context to another on the same host or across the network. We also assume that complex code assemblies may move with equal ease. The result is CODEWEAVE, a model that shows how to develop new forms of code mobility, assign them precise meaning, and facilitate formal verification of programs employing them. The design of CODEWEAVE relies greatly on Mobile UNITY, a notation and proof logic for mobile computing. Mobile UNITY offers a computational milieu for examining a wide range of constructs and semantic alternatives in a clean abstract setting, i.e., unconstrained by compilation and performance considerations traditionally associated with programming language design. Ultimately, the notation offered by CODEWEAVE is given exact semantic definition by means of a direct mapping to the underlying Mobile UNITY model. The abstract and formal treatment of code mobility offered by CODEWEAVE establishes a technical foundation for examining competing proposals and for subsequent integration of some of the mobility constructs both at the language level and within middleware for mobility

    Software development: A paradigm for the future

    Get PDF
    A new paradigm for software development that treats software development as an experimental activity is presented. It provides built-in mechanisms for learning how to develop software better and reusing previous experience in the forms of knowledge, processes, and products. It uses models and measures to aid in the tasks of characterization, evaluation and motivation. An organization scheme is proposed for separating the project-specific focus from the organization's learning and reuse focuses of software development. The implications of this approach for corporations, research and education are discussed and some research activities currently underway at the University of Maryland that support this approach are presented
    corecore