3,417 research outputs found

    Exploring Turn Signal Usage Patterns in Lane Changes: A Bayesian Hierarchical Modelling Analysis of Realistic Driving Data

    Full text link
    Using turn signals to convey a driver's intention to change lanes provides a direct and unambiguous way of communicating with nearby drivers. Nonetheless, past research has indicated that drivers may not always use their turn signals prior to starting a lane change. In this study, we analyze realistic driving data to investigate turn signal usage during lane changes on highways in and around Gothenburg, Sweden. We examine turn signal usage and identify factors that have an influence on it by employing Bayesian hierarchical modelling (BHM). The results showed that a turn signal was used in approximately 60% of cases before starting a lane change, while it was only used after the start of a lane change in 33% of cases. In 7% of cases, a turn signal was not used at all. Additionally, the BHM results reveal that various factors influence turn signal usage. The study concludes that understanding the factors that affect turn signal usage is crucial for improving traffic safety through policy-making and designing algorithms for autonomous vehicles for future mixed traffic

    Autonomous Vehicles: Problems and Principles for Future Regulation

    Get PDF

    Critical Scenario Identification for Testing of Autonomous Driving Systems

    Get PDF
    Background: Autonomous systems have received considerable attention from academia and are adopted by various industrial domains, such as automotive, avionics, etc. As many of them are considered safety-critical, testing is indispensable to verify their reliability and safety. However, there is no common standard for testing autonomous systems efficiently and effectively. Thus new approaches for testing such systems must be developed.Aim: The objective of this thesis is two-fold. First, we want to present an overview of software testing of autonomous systems, i.e., relevant concepts, challenges, and techniques available in academic research and industry practice. Second, we aim to establish a new approach for testing autonomous driving systems and demonstrate its effectiveness by using real autonomous driving systems from industry.Research Methodology: We conducted the research in three steps using the design science paradigm. First, we explored the existing literature and industry practices to understand the state of the art for testing of autonomous systems. Second, we focused on a particular sub-domain - autonomous driving - and proposed a systematic approach for critical test scenario identification. Lastly, we validated our approach and employed it for testing real autonomous driving systems by collaborating with Volvo Cars.Results: We present the results as four papers in this thesis. First, we conceptualized a definition of autonomous systems and classified challenges and approaches, techniques, and practices for testing autonomous systems in general. Second, we designed a systematic approach for critical test scenario identification. We employed the approach for testing two real autonomous driving systems from the industry and have effectively identified critical test scenarios. Lastly, we established a model for predicting the distribution of vehicle-pedestrian interactions for realistic test scenario generation for autonomous driving systems. Conclusion: Critical scenario identification is a favorable approach to generate test scenarios and facilitate the testing of autonomous driving systems in an efficient way. Future improvement of the approach includes (1) evaluating the effectiveness of the generated critical scenarios for testing; (2) extending the sub-components in this approach; (3) combining different testing approaches, and (4) exploring the application of the approach to test different autonomous systems

    Evolving Clustering Algorithms And Their Application For Condition Monitoring, Diagnostics, & Prognostics

    Get PDF
    Applications of Condition-Based Maintenance (CBM) technology requires effective yet generic data driven methods capable of carrying out diagnostics and prognostics tasks without detailed domain knowledge and human intervention. Improved system availability, operational safety, and enhanced logistics and supply chain performance could be achieved, with the widespread deployment of CBM, at a lower cost level. This dissertation focuses on the development of a Mutual Information based Recursive Gustafson-Kessel-Like (MIRGKL) clustering algorithm which operates recursively to identify underlying model structure and parameters from stream type data. Inspired by the Evolving Gustafson-Kessel-like Clustering (eGKL) algorithm, we applied the notion of mutual information to the well-known Mahalanobis distance as the governing similarity measure throughout. This is also a special case of the Kullback-Leibler (KL) Divergence where between-cluster shape information (governed by the determinant and trace of the covariance matrix) is omitted and is only applicable in the case of normally distributed data. In the cluster assignment and consolidation process, we proposed the use of the Chi-square statistic with the provision of having different probability thresholds. Due to the symmetry and boundedness property brought in by the mutual information formulation, we have shown with real-world data that the algorithm’s performance becomes less sensitive to the same range of probability thresholds which makes system tuning a simpler task in practice. As a result, improvement demonstrated by the proposed algorithm has implications in improving generic data driven methods for diagnostics, prognostics, generic function approximations and knowledge extractions for stream type of data. The work in this dissertation demonstrates MIRGKL’s effectiveness in clustering and knowledge representation and shows promising results in diagnostics and prognostics applications

    Local determinants of driving behaviours: installation theory interventions to reduce fuel consumption among truck drivers in Colombia

    Get PDF
    Eco-driving has been linked to considerable reductions in negative externalities and costs for transportation companies, employees and communities (including fuel consumption, safety and emission benefits). Nevertheless, some of the biggest challenges to its implementation are related to promoting behavioural change among drivers. This paper presents the results of three behavioural field interventions that were successful to improve fuel efficiency in heavy freight transportation. The interventions brought further improvement even though the target company already had strong training, incentive, control and feedback procedures in place. The Installation Theory framework and the Subjective Evidence Based Ethnography (SEBE) technique were used to systematically analyse determinants of driving behaviours, and to design cost-effective behavioural interventions based on social norms. The effects of three interventions were then tested using a pre-test post-test control group design among 211 drivers of the company. Results show significant decreases in average monthly fuel consumption of up to 4% in month 1 and up to 4.5% in month 3. Our findings show (with certain qualifications), that the Installation Theory framework and social norm interventions can be a cost-effective method to improve fuel efficiency in road freight transport companies, even when strong training, incentive, control and feedback procedures are already in place

    Model-Based Analysis of User Behaviors in Medical Cyber-Physical Systems

    Get PDF
    Human operators play a critical role in various Cyber-Physical System (CPS) domains, for example, transportation, smart living, robotics, and medicine. The rapid advancement of automation technology is driving a trend towards deep human-automation cooperation in many safety-critical applications, making it important to explicitly consider user behaviors throughout the system development cycle. While past research has generated extensive knowledge and techniques for analyzing human-automation interaction, in many emerging applications, it remains an open challenge to develop quantitative models of user behaviors that can be directly incorporated into the system-level analysis. This dissertation describes methods for modeling different types of user behaviors in medical CPS and integrating the behavioral models into system analysis. We make three main contributions. First, we design a model-based analysis framework to evaluate, improve, and formally verify the robustness of generic (i.e., non-personalized) user behaviors that are typically driven by rule-based clinical protocols. We conceptualize a data-driven technique to predict safety-critical events at run-time in the presence of possible time-varying process disturbances. Second, we develop a methodology to systematically identify behavior variables and functional relationships in healthcare applications. We build personalized behavior models and analyze population-level behavioral patterns. Third, we propose a sequential decision filtering technique by leveraging a generic parameter-invariant test to validate behavior information that may be measured through unreliable channels, which is a practical challenge in many human-in-the-loop applications. A unique strength of this validation technique is that it achieves high inter-subject consistency despite uncertain parametric variances in the physiological processes, without needing any individual-level tuning. We validate the proposed approaches by applying them to several case studies
    • …
    corecore