5,763 research outputs found

    A Framework for Program Development Based on Schematic Proof

    Get PDF
    Often, calculi for manipulating and reasoning about programs can be recast as calculi for synthesizing programs. The difference involves often only a slight shift of perspective: admitting metavariables into proofs. We propose that such calculi should be implemented in logical frameworks that support this kind of proof construction and that such an implementation can unify program verification and synthesis. Our proposal is illustrated with a worked example developed in Paulson's Isabelle system. We also give examples of existent calculi that are closely related to the methodology we are proposing and others that can be profitably recast using our approach

    Plan generation using a method of deductive program synthesis

    Get PDF
    In this paper we introduce a planning approach based on a method of deductive program synthesis. The program synthesis system we rely upon takes first-order specifications and from these derives recursive programs automatically. It uses a set of transformation rules whose applications are guided by an overall strategy. Additionally several heuristics are involved which considerably reduce the search space. We show by means of an example taken from the blocks world how even recursive plans can be obtained with this method. Some modifications of the synthesis strategy and heuristics are discussed, which are necessary to obtain a powerful and automatic planning system. Finally it is shown how subplans can be introduced and generated separately

    SAGA: A project to automate the management of software production systems

    Get PDF
    The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management

    PHI : a logic-based tool for intelligent help systems

    Get PDF
    We introduce a system which improves the performance of intelligent help systems by supplying them with plan generation and plan recognition components. Both components work in close mutual cooperation. We demonstrate two modes of cross-talk between them, one where plan recognition is done on the basis of abstract plans provided by the planner and the other where optimal plans are generated based on recognition results. The examples which are presented are taken from an operating system domain, namely from the UNIX mail domain. Our system is completely logic-based. Relying on a common logical framework--the interval-based modal temporal logic LLP which we have developed--both components are implemented as special purpose inference procedures. Plan generation from first and second principles is provided and carried out deductively, whereas plan recognition follows a new abductive approach for modal logics. The plan recognizer is additionally supplied with a probabilistic reasoner as a means to adjust the help provided for user-specific characteristics
    corecore