27,453 research outputs found

    An Integrated Methodology for Creating Composed Web/Grid Services

    Get PDF
    This thesis presents an approach to design, specify, validate, verify, implement, and evaluate composed web/grid services. Web and grid services can be composed to create new services with complex behaviours. The BPEL (Business Process Execution Language) standard was created to enable the orchestration of web services, but there have also been investigation of its use for grid services. BPEL specifies the implementation of service composition but has no formal semantics; implementations are in practice checked by testing. Formal methods are used in general to define an abstract model of system behaviour that allows simulation and reasoning about properties. The approach can detect and reduce potentially costly errors at design time. CRESS (Communication Representation Employing Systematic Specification) is a domainindependent, graphical, abstract notation, and integrated toolset for developing composite web service. The original version of CRESS had automated support for formal specification in LOTOS (Language Of Temporal Ordering Specification), executing formal validation with MUSTARD (Multiple-Use Scenario Testing and Refusal Description), and implementing in BPEL4WS as the early version of BPEL standard. This thesis work has extended CRESS and its integrated tools to design, specify, validate, verify, implement, and evaluate composed web/grid services. The work has extended the CRESS notation to support a wider range of service compositions, and has applied it to grid services as a new domain. The thesis presents two new tools, CLOVE (CRESS Language-Oriented Verification Environment) and MINT (MUSTARD Interpreter), to respectively support formal verification and implementation testing. New work has also extended CRESS to automate implementation of composed services using the more recent BPEL standard WS-BPEL 2.0

    A Rigorous Methodology for Composing Services

    Get PDF
    Creating new services through composition of existing ones is an attractive option. However, composition can be complex and service compatibility needs to be checked. A rigorous and industrially-usable methodology is therefore desirable required for creating, verifying, implementing and validating composed services. An explanation is given of the approach taken by CRESS (Communication Representation Employing Systematic Specification). Formal verification and validation are performed through automated translation to LOTOS (Language Of Temporal Ordering Specification). Implementation and validation are performed through automated translation to BPEL (Business Process Execution Logic) and WSDL (Web Services Description Language). The approach is illustrated with an application to grid service composition in e-Social Science

    Automated Runtime Testing of Web Services

    Get PDF
    Service-oriented computing (SOC) is a relatively new paradigm for developing software applications through the composition of software units called services. With services, software is no longer owned but offered remotely, within or across organisational borders. Currently, the dominant technology for implementing services is that of Web services. Since service requestors do not usually have access to the implementation source code, from their perspective, services are offered as black boxes. However, requestors need to verify first that provided services are trustworthy and implemented correctly before they are integrated into their own business-critical systems. The verification and testing of remote, third-party services involve unique considerations, since testing must be performed in a blackbox manner and at runtime. Addressing the aforementioned concerns, the research work described in this thesis investigates the feasibility of testing Web services for functional correctness, especially at runtime. The aim is to introduce rigour and automation to the testing process, so that service requestors can verify Web services with correctness guarantees and with the aid of tools. Thus, formal methods are utilised to specify the functionality of Web services unambiguously, so that they are amenable to automated and systematic testing. The well-studied stream X-machine (SXM) formalism has been selected as suitable for modelling both the dynamic behavior and static data of Web services, while a proven testing method associated with SXMs is used to derive test sets that can verify the correctness of the implementations. This research concentrates on testing stateful Web services, in which the presence of state makes their behaviour more complex and more difficult to specify and test. The nature of Web service state, its effect on service behaviour, and implications on service modelling and testing, are investigated. In addition, comprehensive techniques are described for deriving a stream X-machine specification of a Web service, and for subsequently testing its implementation for equivalence to the specification. Then, a collaborative approach that makes possible third-party Web service verification and validation is proposed, in which the service provider is required to supply a SXM specification of the service functionality along with the standard WSDL description of its interface. On top of that, techniques are proposed for service providers to include information that ground the abstract SXM specification to the concrete Web service implementation. Having these descriptions available, it is possible to automate at runtime not only test set generation but also test case execution on Web services. A tool has been developed as part of this work, which extends an existing SXM-based testing tool (JSXM). The tool supports the tester activities, consisting of generation of abstract test cases from the SXM specification and their execution on the Web service under test using the supplied grounding information. Practical Web service examples are also used throughout the thesis to demonstrate the proposed techniques

    Issues about the Adoption of Formal Methods for Dependable Composition of Web Services

    Full text link
    Web Services provide interoperable mechanisms for describing, locating and invoking services over the Internet; composition further enables to build complex services out of simpler ones for complex B2B applications. While current studies on these topics are mostly focused - from the technical viewpoint - on standards and protocols, this paper investigates the adoption of formal methods, especially for composition. We logically classify and analyze three different (but interconnected) kinds of important issues towards this goal, namely foundations, verification and extensions. The aim of this work is to individuate the proper questions on the adoption of formal methods for dependable composition of Web Services, not necessarily to find the optimal answers. Nevertheless, we still try to propose some tentative answers based on our proposal for a composition calculus, which we hope can animate a proper discussion

    Analysis and Verification of Service Interaction Protocols - A Brief Survey

    Get PDF
    Modeling and analysis of interactions among services is a crucial issue in Service-Oriented Computing. Composing Web services is a complicated task which requires techniques and tools to verify that the new system will behave correctly. In this paper, we first overview some formal models proposed in the literature to describe services. Second, we give a brief survey of verification techniques that can be used to analyse services and their interaction. Last, we focus on the realizability and conformance of choreographies.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    Specification and Verification of Context-dependent Services

    Full text link
    Current approaches for the discovery, specification, and provision of services ignore the relationship between the service contract and the conditions in which the service can guarantee its contract. Moreover, they do not use formal methods for specifying services, contracts, and compositions. Without a formal basis it is not possible to justify through formal verification the correctness conditions for service compositions and the satisfaction of contractual obligations in service provisions. We remedy this situation in this paper. We present a formal definition of services with context-dependent contracts. We define a composition theory of services with context-dependent contracts taking into consideration functional, nonfunctional, legal and contextual information. Finally, we present a formal verification approach that transforms the formal specification of service composition into extended timed automata that can be verified using the model checking tool UPPAAL.Comment: In Proceedings WWV 2011, arXiv:1108.208

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically

    Web Services: A Process Algebra Approach

    Full text link
    It is now well-admitted that formal methods are helpful for many issues raised in the Web service area. In this paper we present a framework for the design and verification of WSs using process algebras and their tools. We define a two-way mapping between abstract specifications written using these calculi and executable Web services written in BPEL4WS. Several choices are available: design and correct errors in BPEL4WS, using process algebra verification tools, or design and correct in process algebra and automatically obtaining the corresponding BPEL4WS code. The approaches can be combined. Process algebra are not useful only for temporal logic verification: we remark the use of simulation/bisimulation both for verification and for the hierarchical refinement design method. It is worth noting that our approach allows the use of any process algebra depending on the needs of the user at different levels (expressiveness, existence of reasoning tools, user expertise)

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking
    • ā€¦
    corecore