1,246 research outputs found

    THE USE OF SMART GEOMTRY IN ISLAMIC PATTERNS A GENERATIVE APPROACH TO THE RESTORATION OF THE ISLAMIC URBAN AREAS

    Get PDF
    Geometry is an essential design generator in the Islamic architectural style. Islamic styles are distinct for using the art of geometry in their creative designs. In the Islamic designs, geometry represents the order, harmony and beauty in calculations, scale and proportion. It clearly exists in the design of plans, façade, ornaments and patterns. It expresses many concepts of Islam such as the unity and the oneness of Allah, the perfection and the infinity of creation in the universe, the containments and the continuity. The main proportions of the Islamic style depend on the square proportions(ex: Islamic proportion 1:√2 (Williams, 2006), in which the square is the basic module shape that generates the other geometric forms such as the famous Islamic star, octagonal Islamic rose. In addition, square gives the basic axes and symmetry in the main internal spaces such as the Courtyard in the mosques. So far the role of geometry has been fundamentally dependent in which in it contains, regulates and supports the module of the elements. Islamic geometry and proportions are following special shape grammar rules and relations which should be taken into consideration while the design process or the restoration of historical buildings. One can see the Islamic geometry simple in shape but precisely it is composed of a number of complex relations. And when the rules and the relations increase, the complexity in manipulating the geometry manually increases. That requires more time and effort to execute or modify.Therefore, parametric design strategies are employed to aid in solving this complexity.Parametric design develops the geometry to be more related and dependent. Consequently geometry is introduced in a new smart one. In the traditional CAD software’s, if one of the related geometries is deleted or changed, the modeled relationship may be lost. However, Smart geometry, as well as the parametric design, can convert lines, arcs, shapes, solids, and surfaces into a set of algebraic and geometric constraints that could easily generate those patterns according to a specific relations and proportions. Thus, a number of alternatives are presented to use the most suitable solution in a short time

    Foundry: Hierarchical Material Design for Multi-Material Fabrication

    Get PDF
    We demonstrate a new approach for designing functional material definitions for multi-material fabrication using our system called Foundry. Foundry provides an interactive and visual process for hierarchically designing spatially-varying material properties (e.g., appearance, mechanical, optical). The resulting meta-materials exhibit structure at the micro and macro level and can surpass the qualities of traditional composites. The material definitions are created by composing a set of operators into an operator graph. Each operator performs a volume decomposition operation, remaps space, or constructs and assigns a material composition. The operators are implemented using a domain-specific language for multi-material fabrication; users can easily extend the library by writing their own operators. Foundry can be used to build operator graphs that describe complex, parameterized, resolution-independent, and reusable material definitions. We also describe how to stage the evaluation of the final material definition which in conjunction with progressive refinement, allows for interactive material evaluation even for complex designs. We show sophisticated and functional parts designed with our system.National Science Foundation (U.S.) (1138967)National Science Foundation (U.S.) (1409310)National Science Foundation (U.S.) (1547088)National Science Foundation (U.S.). Graduate Research Fellowship ProgramMassachusetts Institute of Technology. Undergraduate Research Opportunities Progra

    Three-dimensional labels: A unified approach to labels for a general spatial grammar interpreter

    Get PDF
    Spatial grammars are rule-based, generative systems for the specification of formal languages. Set and shape grammar formulations of spatial grammars enable the definition of spatial design languages and the creation of alternative designs. The original formalism includes labels that provide the possibility to restrict the application of rules or to incorporate additional, nongeometric information in grammar rules. Labels have been used in various ways. This paper investigates the different uses of labels in existing spatial grammars, both paper based and computational, and introduces a new concept of three-dimensional (3-D) labels for spatial grammars. The approach consolidates the different label types in one integrated concept. The main use of 3-D labels is that they can simplify the matching of the left-hand side of rules in parametric grammars. A prototype implementation is used to illustrate the approach through a mechanical engineering example of generating robot arm concepts. This approach more readily enables the use of complex solid geometry in the definition and application of parametric rules. Thus, the flexible generation of complex, meaningful design solutions for mechanical engineering applications can be achieved using parametric spatial grammars combined with 3-D label

    Dynamic problems for metamaterials: Review of existing models and ideas for further research

    Get PDF
    Metamaterials are materials especially engineered to have a peculiar physical behaviour, to be exploited for some well-specified technological application. In this context we focus on the conception of general micro-structured continua, with particular attention to piezoelectromechanical structures, having a strong coupling between macroscopic motion and some internal degrees of freedom, which may be electric or, more generally, related to some micro-motion. An interesting class of problems in this context regards the design of wave-guides aimed to control wave propagation. The description of the state of the art is followed by some hints addressed to describe some possible research developments and in particular to design optimal design techniques for bone reconstruction or systems which may block wave propagation in some frequency ranges, in both linear and non-linear fields. (C) 2014 Elsevier Ltd. All rights reserved

    POPULATING A LIBRARY OF REUSABLE H-BOMS: ASSESSMENT OF A FEASIBLE IMAGE BASED MODELING WORKFLOW

    Get PDF
    The paper shows the intermediate results of a research activity aimed at populating a library of reusable Historical Building Object Models (H-BOMs) by testing a full digital workflow that takes advantages from using Structure from Motion (SfM) models and is centered on the geometrical/stylistic/materic analysis of the architectural element (portal, window, altar). The aim is to find common (invariant) and uncommon (variant) features in terms of identification of architectural parts and their relationships, geometrical rules, dimensions and proportions, construction materials and measure units, in order to model archetypal shapes from which it is possible to derive all the style variations. At this regard, a set of 14th - 16th century gothic portals of the catalan-aragonese architecture in Etnean area of Eastern Sicily has been studied and used to assess the feasibility of the identified workflow. This approach tries to answer the increasingly demand for guidelines and standards in the field of Cultural Heritage Conservation to create and manage semantic-aware 3D models able to include all the information (both geometrical and alphanumerical ones) concerning historical buildings and able to be reused in several projects

    Manufacturing and testing of 3D-printed polymer isogrid lattice cylindrical shell structures

    Get PDF
    This article focuses on the use of fused deposition modeling (FDM) technology to manufacture and test polymer isogrid lattice cylindrical shell (LCS) structures with equilateral triangular unit-cells using non-professional and conventional 3D printing software and hardware. A parametric and automated 3D model for these structures is created in SolidWorks using the Visual Basic (VBA) programming language. Different configurations of the isogrid LCS structure are modeled, manufactured, and tested in order to determine the compressive structural strength and stiffness, as well as to investigate structural instability. The experimental results are used to deduce the inherent limitations of 3D printing, including the inhomogeneities, imperfections, and non-isotropic nature of FDM, as well as the effect of the configurations on local buckling behavior. The results suggest that coupling between local and global buckling has an impact on the compressive stiffness and strength of LCS structures, reducing the accuracy of structural designs neglecting these effects.F71E-503E-DE74 | AD?LIO MANUEL DE SOUSA CAVADASN/

    Envisioning the qualitative effects of robot manipulation actions using simulation-based projections

    Get PDF
    Autonomous robots that are to perform complex everyday tasks such as making pancakes have to understand how the effects of an action depend on the way the action is executed. Within Artificial Intelligence, classical planning reasons about whether actions are executable, but makes the assumption that the actions will succeed (with some probability). In this work, we have designed, implemented, and analyzed a framework that allows us to envision the physical effects of robot manipulation actions. We consider envisioning to be a qualitative reasoning method that reasons about actions and their effects based on simulation-based projections. Thereby it allows a robot to infer what could happen when it performs a task in a certain way. This is achieved by translating a qualitative physics problem into a parameterized simulation problem; performing a detailed physics-based simulation of a robot plan; logging the state evolution into appropriate data structures; and then translating these sub-symbolic data structures into interval-based first-order symbolic, qualitative representations, called timelines. The result of the envisioning is a set of detailed narratives represented by timelines which are then used to infer answers to qualitative reasoning problems. By envisioning the outcome of actions before committing to them, a robot is able to reason about physical phenomena and can therefore prevent itself from ending up in unwanted situations. Using this approach, robots can perform manipulation tasks more efficiently, robustly, and flexibly, and they can even successfully accomplish previously unknown variations of tasks

    Uncovering the specificities of CAD tools for industrial design with design theory – style models for generic singularity

    Get PDF
    International audienceAccording to some casual observers, computer-aided design (CAD) tools are very similar. These tools are used to design new artifacts in a digital environment; hence, they share typical software components, such as a computing engine and human-machine interface. However, CAD software is dedicated to specific professionals—such as engineers, three-dimensional (3D) artists, and industrial designers (IDs)—who claim that, despite their apparent similarities, CAD tools are so different that they are not substitutable. Moreover, CAD tools do not fully meet the needs of IDs. This paper aims at better characterizing CAD tools by taking into account their underlying design logic, which involves relying on recent advances in design theory. We show that engineering CAD tools are actually modeling tools that design a generic variety of products; 3D artist CAD tools not only design but immediately produce single digital artefacts; and ID CAD tools are neither a mix nor an hybridization of engineering CAD and 3D artist CAD tools but have their own logic, namely to create new conceptual models for a large variety of products, that is, the creation of a unique original style that leads to a generic singularity. Such tools are useful for many creative designers beyond IDs
    • …
    corecore