425 research outputs found

    Engineering Resilient Space Systems

    Get PDF
    Several distinct trends will influence space exploration missions in the next decade. Destinations are becoming more remote and mysterious, science questions more sophisticated, and, as mission experience accumulates, the most accessible targets are visited, advancing the knowledge frontier to more difficult, harsh, and inaccessible environments. This leads to new challenges including: hazardous conditions that limit mission lifetime, such as high radiation levels surrounding interesting destinations like Europa or toxic atmospheres of planetary bodies like Venus; unconstrained environments with navigation hazards, such as free-floating active small bodies; multielement missions required to answer more sophisticated questions, such as Mars Sample Return (MSR); and long-range missions, such as Kuiper belt exploration, that must survive equipment failures over the span of decades. These missions will need to be successful without a priori knowledge of the most efficient data collection techniques for optimum science return. Science objectives will have to be revised ‘on the fly’, with new data collection and navigation decisions on short timescales. Yet, even as science objectives are becoming more ambitious, several critical resources remain unchanged. Since physics imposes insurmountable light-time delays, anticipated improvements to the Deep Space Network (DSN) will only marginally improve the bandwidth and communications cadence to remote spacecraft. Fiscal resources are increasingly limited, resulting in fewer flagship missions, smaller spacecraft, and less subsystem redundancy. As missions visit more distant and formidable locations, the job of the operations team becomes more challenging, seemingly inconsistent with the trend of shrinking mission budgets for operations support. How can we continue to explore challenging new locations without increasing risk or system complexity? These challenges are present, to some degree, for the entire Decadal Survey mission portfolio, as documented in Vision and Voyages for Planetary Science in the Decade 2013–2022 (National Research Council, 2011), but are especially acute for the following mission examples, identified in our recently completed KISS Engineering Resilient Space Systems (ERSS) study: 1. A Venus lander, designed to sample the atmosphere and surface of Venus, would have to perform science operations as components and subsystems degrade and fail; 2. A Trojan asteroid tour spacecraft would spend significant time cruising to its ultimate destination (essentially hibernating to save on operations costs), then upon arrival, would have to act as its own surveyor, finding new objects and targets of opportunity as it approaches each asteroid, requiring response on short notice; and 3. A MSR campaign would not only be required to perform fast reconnaissance over long distances on the surface of Mars, interact with an unknown physical surface, and handle degradations and faults, but would also contain multiple components (launch vehicle, cruise stage, entry and landing vehicle, surface rover, ascent vehicle, orbiting cache, and Earth return vehicle) that dramatically increase the need for resilience to failure across the complex system. The concept of resilience and its relevance and application in various domains was a focus during the study, with several definitions of resilience proposed and discussed. While there was substantial variation in the specifics, there was a common conceptual core that emerged—adaptation in the presence of changing circumstances. These changes were couched in various ways—anomalies, disruptions, discoveries—but they all ultimately had to do with changes in underlying assumptions. Invalid assumptions, whether due to unexpected changes in the environment, or an inadequate understanding of interactions within the system, may cause unexpected or unintended system behavior. A system is resilient if it continues to perform the intended functions in the presence of invalid assumptions. Our study focused on areas of resilience that we felt needed additional exploration and integration, namely system and software architectures and capabilities, and autonomy technologies. (While also an important consideration, resilience in hardware is being addressed in multiple other venues, including 2 other KISS studies.) The study consisted of two workshops, separated by a seven-month focused study period. The first workshop (Workshop #1) explored the ‘problem space’ as an organizing theme, and the second workshop (Workshop #2) explored the ‘solution space’. In each workshop, focused discussions and exercises were interspersed with presentations from participants and invited speakers. The study period between the two workshops was organized as part of the synthesis activity during the first workshop. The study participants, after spending the initial days of the first workshop discussing the nature of resilience and its impact on future science missions, decided to split into three focus groups, each with a particular thrust, to explore specific ideas further and develop material needed for the second workshop. The three focus groups and areas of exploration were: 1. Reference missions: address/refine the resilience needs by exploring a set of reference missions 2. Capability survey: collect, document, and assess current efforts to develop capabilities and technology that could be used to address the documented needs, both inside and outside NASA 3. Architecture: analyze the impact of architecture on system resilience, and provide principles and guidance for architecting greater resilience in our future systems The key product of the second workshop was a set of capability roadmaps pertaining to the three reference missions selected for their representative coverage of the types of space missions envisioned for the future. From these three roadmaps, we have extracted several common capability patterns that would be appropriate targets for near-term technical development: one focused on graceful degradation of system functionality, a second focused on data understanding for science and engineering applications, and a third focused on hazard avoidance and environmental uncertainty. Continuing work is extending these roadmaps to identify candidate enablers of the capabilities from the following three categories: architecture solutions, technology solutions, and process solutions. The KISS study allowed a collection of diverse and engaged engineers, researchers, and scientists to think deeply about the theory, approaches, and technical issues involved in developing and applying resilience capabilities. The conclusions summarize the varied and disparate discussions that occurred during the study, and include new insights about the nature of the challenge and potential solutions: 1. There is a clear and definitive need for more resilient space systems. During our study period, the key scientists/engineers we engaged to understand potential future missions confirmed the scientific and risk reduction value of greater resilience in the systems used to perform these missions. 2. Resilience can be quantified in measurable terms—project cost, mission risk, and quality of science return. In order to consider resilience properly in the set of engineering trades performed during the design, integration, and operation of space systems, the benefits and costs of resilience need to be quantified. We believe, based on the work done during the study, that appropriate metrics to measure resilience must relate to risk, cost, and science quality/opportunity. Additional work is required to explicitly tie design decisions to these first-order concerns. 3. There are many existing basic technologies that can be applied to engineering resilient space systems. Through the discussions during the study, we found many varied approaches and research that address the various facets of resilience, some within NASA, and many more beyond. Examples from civil architecture, Department of Defense (DoD) / Defense Advanced Research Projects Agency (DARPA) initiatives, ‘smart’ power grid control, cyber-physical systems, software architecture, and application of formal verification methods for software were identified and discussed. The variety and scope of related efforts is encouraging and presents many opportunities for collaboration and development, and we expect many collaborative proposals and joint research as a result of the study. 4. Use of principled architectural approaches is key to managing complexity and integrating disparate technologies. The main challenge inherent in considering highly resilient space systems is that the increase in capability can result in an increase in complexity with all of the 3 risks and costs associated with more complex systems. What is needed is a better way of conceiving space systems that enables incorporation of capabilities without increasing complexity. We believe principled architecting approaches provide the needed means to convey a unified understanding of the system to primary stakeholders, thereby controlling complexity in the conception and development of resilient systems, and enabling the integration of disparate approaches and technologies. A representative architectural example is included in Appendix F. 5. Developing trusted resilience capabilities will require a diverse yet strategically directed research program. Despite the interest in, and benefits of, deploying resilience space systems, to date, there has been a notable lack of meaningful demonstrated progress in systems capable of working in hazardous uncertain situations. The roadmaps completed during the study, and documented in this report, provide the basis for a real funded plan that considers the required fundamental work and evolution of needed capabilities. Exploring space is a challenging and difficult endeavor. Future space missions will require more resilience in order to perform the desired science in new environments under constraints of development and operations cost, acceptable risk, and communications delays. Development of space systems with resilient capabilities has the potential to expand the limits of possibility, revolutionizing space science by enabling as yet unforeseen missions and breakthrough science observations. Our KISS study provided an essential venue for the consideration of these challenges and goals. Additional work and future steps are needed to realize the potential of resilient systems—this study provided the necessary catalyst to begin this process

    Spacecraft Dormancy Autonomy Analysis for a Crewed Martian Mission

    Get PDF
    Current concepts of operations for human exploration of Mars center on the staged deployment of spacecraft, logistics, and crew. Though most studies focus on the needs for human occupation of the spacecraft and habitats, these resources will spend most of their lifetime unoccupied. As such, it is important to identify the operational state of the unoccupied spacecraft or habitat, as well as to design the systems to enable the appropriate level of autonomy. Key goals for this study include providing a realistic assessment of what "dormancy" entails for human spacecraft, exploring gaps in state-of-the-art for autonomy in human spacecraft design, providing recommendations for investments in autonomous systems technology development, and developing architectural requirements for spacecraft that must be autonomous during dormant operations. The mission that was chosen is based on a crewed mission to Mars. In particular, this study focuses on the time that the spacecraft that carried humans to Mars spends dormant in Martian orbit while the crew carries out a surface mission. Communications constraints are assumed to be severe, with limited bandwidth and limited ability to send commands and receive telemetry. The assumptions made as part of this mission have close parallels with mission scenarios envisioned for dormant cis-lunar habitats that are stepping-stones to Mars missions. As such, the data in this report is expected to be broadly applicable to all dormant deep space human spacecraft

    Energy-Aware System-Level Design of Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPSs) are heterogeneous systems in which one or several computational cores interact with the physical environment. This interaction is typically performed through electromechanical elements such as sensors and actuators. Many CPSs operate as part of a network and some of them present a constrained energy budget (for example, they are battery powered). Examples of energy constrained CPSs could be a mobile robot, the nodes that compose a Body Area Network or a pacemaker. The heterogeneity present in the composition of CPSs together with the constrained energy availability makes these systems challenging to design. A way to tackle both complexity and costs is the application of abstract modelling and simulation. This thesis proposed the application of modelling at the system level, taking energy consumption in the different kinds of subsystems into consideration. By adopting this cross disciplinary approach to energy consumption it is possible to decrease it effectively. The results of this thesis are a number of modelling guidelines and tool improvements to support this kind of holistic analysis, covering energy consumption in electromechanical, computation and communication subsystems. From a methodological point of view these have been framed within a V-lifecycle. Finally, this approach has been demonstrated on two case studies from the medical domain enabling the exploration of alternative systems architectures and producing energy consumption estimates to conduct trade-off analysis

    Engineering Resilient Space Systems

    Get PDF
    Several distinct trends will influence space exploration missions in the next decade. Destinations are becoming more remote and mysterious, science questions more sophisticated, and, as mission experience accumulates, the most accessible targets are visited, advancing the knowledge frontier to more difficult, harsh, and inaccessible environments. This leads to new challenges including: hazardous conditions that limit mission lifetime, such as high radiation levels surrounding interesting destinations like Europa or toxic atmospheres of planetary bodies like Venus; unconstrained environments with navigation hazards, such as free-floating active small bodies; multielement missions required to answer more sophisticated questions, such as Mars Sample Return (MSR); and long-range missions, such as Kuiper belt exploration, that must survive equipment failures over the span of decades. These missions will need to be successful without a priori knowledge of the most efficient data collection techniques for optimum science return. Science objectives will have to be revised ‘on the fly’, with new data collection and navigation decisions on short timescales. Yet, even as science objectives are becoming more ambitious, several critical resources remain unchanged. Since physics imposes insurmountable light-time delays, anticipated improvements to the Deep Space Network (DSN) will only marginally improve the bandwidth and communications cadence to remote spacecraft. Fiscal resources are increasingly limited, resulting in fewer flagship missions, smaller spacecraft, and less subsystem redundancy. As missions visit more distant and formidable locations, the job of the operations team becomes more challenging, seemingly inconsistent with the trend of shrinking mission budgets for operations support. How can we continue to explore challenging new locations without increasing risk or system complexity? These challenges are present, to some degree, for the entire Decadal Survey mission portfolio, as documented in Vision and Voyages for Planetary Science in the Decade 2013–2022 (National Research Council, 2011), but are especially acute for the following mission examples, identified in our recently completed KISS Engineering Resilient Space Systems (ERSS) study: 1. A Venus lander, designed to sample the atmosphere and surface of Venus, would have to perform science operations as components and subsystems degrade and fail; 2. A Trojan asteroid tour spacecraft would spend significant time cruising to its ultimate destination (essentially hibernating to save on operations costs), then upon arrival, would have to act as its own surveyor, finding new objects and targets of opportunity as it approaches each asteroid, requiring response on short notice; and 3. A MSR campaign would not only be required to perform fast reconnaissance over long distances on the surface of Mars, interact with an unknown physical surface, and handle degradations and faults, but would also contain multiple components (launch vehicle, cruise stage, entry and landing vehicle, surface rover, ascent vehicle, orbiting cache, and Earth return vehicle) that dramatically increase the need for resilience to failure across the complex system. The concept of resilience and its relevance and application in various domains was a focus during the study, with several definitions of resilience proposed and discussed. While there was substantial variation in the specifics, there was a common conceptual core that emerged—adaptation in the presence of changing circumstances. These changes were couched in various ways—anomalies, disruptions, discoveries—but they all ultimately had to do with changes in underlying assumptions. Invalid assumptions, whether due to unexpected changes in the environment, or an inadequate understanding of interactions within the system, may cause unexpected or unintended system behavior. A system is resilient if it continues to perform the intended functions in the presence of invalid assumptions. Our study focused on areas of resilience that we felt needed additional exploration and integration, namely system and software architectures and capabilities, and autonomy technologies. (While also an important consideration, resilience in hardware is being addressed in multiple other venues, including 2 other KISS studies.) The study consisted of two workshops, separated by a seven-month focused study period. The first workshop (Workshop #1) explored the ‘problem space’ as an organizing theme, and the second workshop (Workshop #2) explored the ‘solution space’. In each workshop, focused discussions and exercises were interspersed with presentations from participants and invited speakers. The study period between the two workshops was organized as part of the synthesis activity during the first workshop. The study participants, after spending the initial days of the first workshop discussing the nature of resilience and its impact on future science missions, decided to split into three focus groups, each with a particular thrust, to explore specific ideas further and develop material needed for the second workshop. The three focus groups and areas of exploration were: 1. Reference missions: address/refine the resilience needs by exploring a set of reference missions 2. Capability survey: collect, document, and assess current efforts to develop capabilities and technology that could be used to address the documented needs, both inside and outside NASA 3. Architecture: analyze the impact of architecture on system resilience, and provide principles and guidance for architecting greater resilience in our future systems The key product of the second workshop was a set of capability roadmaps pertaining to the three reference missions selected for their representative coverage of the types of space missions envisioned for the future. From these three roadmaps, we have extracted several common capability patterns that would be appropriate targets for near-term technical development: one focused on graceful degradation of system functionality, a second focused on data understanding for science and engineering applications, and a third focused on hazard avoidance and environmental uncertainty. Continuing work is extending these roadmaps to identify candidate enablers of the capabilities from the following three categories: architecture solutions, technology solutions, and process solutions. The KISS study allowed a collection of diverse and engaged engineers, researchers, and scientists to think deeply about the theory, approaches, and technical issues involved in developing and applying resilience capabilities. The conclusions summarize the varied and disparate discussions that occurred during the study, and include new insights about the nature of the challenge and potential solutions: 1. There is a clear and definitive need for more resilient space systems. During our study period, the key scientists/engineers we engaged to understand potential future missions confirmed the scientific and risk reduction value of greater resilience in the systems used to perform these missions. 2. Resilience can be quantified in measurable terms—project cost, mission risk, and quality of science return. In order to consider resilience properly in the set of engineering trades performed during the design, integration, and operation of space systems, the benefits and costs of resilience need to be quantified. We believe, based on the work done during the study, that appropriate metrics to measure resilience must relate to risk, cost, and science quality/opportunity. Additional work is required to explicitly tie design decisions to these first-order concerns. 3. There are many existing basic technologies that can be applied to engineering resilient space systems. Through the discussions during the study, we found many varied approaches and research that address the various facets of resilience, some within NASA, and many more beyond. Examples from civil architecture, Department of Defense (DoD) / Defense Advanced Research Projects Agency (DARPA) initiatives, ‘smart’ power grid control, cyber-physical systems, software architecture, and application of formal verification methods for software were identified and discussed. The variety and scope of related efforts is encouraging and presents many opportunities for collaboration and development, and we expect many collaborative proposals and joint research as a result of the study. 4. Use of principled architectural approaches is key to managing complexity and integrating disparate technologies. The main challenge inherent in considering highly resilient space systems is that the increase in capability can result in an increase in complexity with all of the 3 risks and costs associated with more complex systems. What is needed is a better way of conceiving space systems that enables incorporation of capabilities without increasing complexity. We believe principled architecting approaches provide the needed means to convey a unified understanding of the system to primary stakeholders, thereby controlling complexity in the conception and development of resilient systems, and enabling the integration of disparate approaches and technologies. A representative architectural example is included in Appendix F. 5. Developing trusted resilience capabilities will require a diverse yet strategically directed research program. Despite the interest in, and benefits of, deploying resilience space systems, to date, there has been a notable lack of meaningful demonstrated progress in systems capable of working in hazardous uncertain situations. The roadmaps completed during the study, and documented in this report, provide the basis for a real funded plan that considers the required fundamental work and evolution of needed capabilities. Exploring space is a challenging and difficult endeavor. Future space missions will require more resilience in order to perform the desired science in new environments under constraints of development and operations cost, acceptable risk, and communications delays. Development of space systems with resilient capabilities has the potential to expand the limits of possibility, revolutionizing space science by enabling as yet unforeseen missions and breakthrough science observations. Our KISS study provided an essential venue for the consideration of these challenges and goals. Additional work and future steps are needed to realize the potential of resilient systems—this study provided the necessary catalyst to begin this process

    Wireless Sensor Networks for Long-Term Monitoring of Urban Noise

    Get PDF
    Noise pollution in urban environments is becoming increasingly common and it has potential to negatively impact people’s health and decrease overall productivity. In order to alleviate these effects, it is important to better quantify noise patterns and levels through data collection and analysis. Wireless sensor networks offer a method for achieving this with a higher level of granularity than traditional handheld devices. In this study, a wireless sensing unit (WSU) was developed that possesses the same functionality as a handheld sound level meter. The WSU is comprised of a microcontroller unit that enables on-board computations, a wireless transceiver that uses Zigbee protocol for data transmission, and an external peripheral board that houses the microphone transducer. The WSU utilizes on-board data processing techniques to monitor noise by computing equivalent continuous sound levels, LeqT, which effectively minimizes data transmission and increases the overall longevity of the node. Strategies are also employed to ensure real-time functionality is maintained on the sensing unit, with a focus on preventing bottlenecks between data acquisition, data processing, and wireless transmission. Four units were deployed in two weeks field validation test and were shown to be capable of monitoring noise for extended periods of time

    Emerging research directions in computer science : contributions from the young informatics faculty in Karlsruhe

    Get PDF
    In order to build better human-friendly human-computer interfaces, such interfaces need to be enabled with capabilities to perceive the user, his location, identity, activities and in particular his interaction with others and the machine. Only with these perception capabilities can smart systems ( for example human-friendly robots or smart environments) become posssible. In my research I\u27m thus focusing on the development of novel techniques for the visual perception of humans and their activities, in order to facilitate perceptive multimodal interfaces, humanoid robots and smart environments. My work includes research on person tracking, person identication, recognition of pointing gestures, estimation of head orientation and focus of attention, as well as audio-visual scene and activity analysis. Application areas are humanfriendly humanoid robots, smart environments, content-based image and video analysis, as well as safety- and security-related applications. This article gives a brief overview of my ongoing research activities in these areas

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 391)

    Get PDF
    This bibliography lists 75 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Aug. 1994. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Saving Energy in QoS Networked Data Centers

    Get PDF
    One of the major challenges that cloud providers face is minimizing power consumption of their data centers. To this point, majority of current research focuses on energy efficient management of resources in the Infrastructure as a Service model using virtualization and through virtual machine consolidation. However, current virtualized data centers are not designed for supporting communication–computing intensive real-time applications, such as, info-mobility applications, real-time video co-decoding. In fact, imposing hard-limits on the overall per-job delay forces the overall networked computing infrastructure to adapt quickly its resource utilization to the (possibly, unpredictable and abrupt) time fluctuations of the offered workload. Jointly, a promising approach for making networked data centers more energy-efficient is the use of traffic engineering-based method to dynamically adapt the number of active servers to match the current workload. Therefore, it is desirable to develop a flexible and robust resource allocation algorithm that automatically adapts to time-varying workload and pays close attention to the consumed energy in computing and communication in virtualized networked data centers (VNetDCs). In this thesis, we propose three new dynamic and adaptive energy-aware algorithms scheduling policies that model and manage VNetDCs. Our focuses are to propose i) admission control of the offered input traffic; ii) balanced control and dispatching of the admitted workload; iii) dynamic reconfiguration and consolidation of the Dynamic Voltage and Frequency Scaling (DVFS)-enabled Virtual Machines (VMs) instantiated onto the parallel computing platform; and, iv) rate control of the traffic injected into the TCP/IP mobile connection. Necessary and sufficient conditions for the feasibility and optimality of the proposed schedulers are also provided in closed-form. Specifically, the first approach, called VNetDC, the optimal minimum-energy scheduler for the joint adaptive load balancing and provisioning of the computing-plus-communication resources. VNetDC platforms have been considered which operate under hard real-time constraints. VNetDC has capability to adapt to the time-varying statistical features of the offered workload without requiring any a priori assumption and/or knowledge about the statistics of the processed data. Green- NetDC is the second scheduling policy that is a flexible and robust resource allocation algorithm that automatically adapts to time-varying workload and pays close attention to the consumed energy in computing and communication in VNetDCs. GreenNetDC not only ensures users the Quality of Service (through Service Level Agreements) but also achieves maximum energy saving and attains green cloud computing goals in a fully distributed fashion by utilizing the DVFS-based CPU frequencies. Finally, the last algorithm tested an efficient dynamic resource provisioning scheduler which applied in Networked Data Centers (NetDCs). This method is connected to (possibly, mobile) clients through TCP/IP-based vehicular backbones The salient features of this algorithm is that: i) It is adaptive and admits distributed scalable implementation; ii) It is capable to provide hard QoS guarantees, in terms of minimum/maximum instantaneous rate of the traffic delivered to the client, instantaneous goodput and total processing delay; and, iii) It explicitly accounts for the dynamic interaction between computing and networking resources, in order to maximize the resulting energy efficiency. Actual performance of the proposed scheduler in the presence of :i) client mobility; ii)wireless fading; iii)reconfiguration and two-thresholds consolidation costs of the underlying networked computing platform; and, iv)abrupt changes of the transport quality of the available TCP/IP mobile connection, is numerically tested and compared against the corresponding ones of some state-of-the-art static schedulers, under both synthetically generated and measured real-world workload traces
    • …
    corecore