53,439 research outputs found

    A Formal Methods Approach to Pattern Synthesis in Reaction Diffusion Systems

    Full text link
    We propose a technique to detect and generate patterns in a network of locally interacting dynamical systems. Central to our approach is a novel spatial superposition logic, whose semantics is defined over the quad-tree of a partitioned image. We show that formulas in this logic can be efficiently learned from positive and negative examples of several types of patterns. We also demonstrate that pattern detection, which is implemented as a model checking algorithm, performs very well for test data sets different from the learning sets. We define a quantitative semantics for the logic and integrate the model checking algorithm with particle swarm optimization in a computational framework for synthesis of parameters leading to desired patterns in reaction-diffusion systems

    Turing instabilities in general systems

    Get PDF
    We present necessary and sufficient conditions on the stability matrix of a general n(S2)-dimensional reaction-diffusion system which guarantee that its uniform steady state can undergo a Turing bifurcation. The necessary (kinetic) condition, requiring that the system be composed of an unstable (or activator) and a stable (or inhibitor) subsystem, and the sufficient condition of sufficiently rapid inhibitor diffusion relative to the activator subsystem are established in three theorems which form the core of our results. Given the possibility that the unstable (activator) subsystem involves several species (dimensions), we present a classification of the analytically deduced Turing bifurcations into p (1 h p h (n m 1)) different classes. For n = 3 dimensions we illustrate numerically that two types of steady Turing pattern arise in one spatial dimension in a generic reaction-diffusion system. The results confirm the validity of an earlier conjecture [12] and they also characterise the class of so-called strongly stable matrices for which only necessary conditions have been known before [23, 24]. One of the main consequences of the present work is that biological morphogens, which have so far been expected to be single chemical species [1-9], may instead be composed of two or more interacting species forming an unstable subsystem

    The Kinetic Basis of Self-Organized Pattern Formation

    Full text link
    In his seminal paper on morphogenesis (1952), Alan Turing demonstrated that different spatio-temporal patterns can arise due to instability of the homogeneous state in reaction-diffusion systems, but at least two species are necessary to produce even the simplest stationary patterns. This paper is aimed to propose a novel model of the analog (continuous state) kinetic automaton and to show that stationary and dynamic patterns can arise in one-component networks of kinetic automata. Possible applicability of kinetic networks to modeling of real-world phenomena is also discussed.Comment: 8 pages, submitted to the 14th International Conference on the Synthesis and Simulation of Living Systems (Alife 14) on 23.03.2014, accepted 09.05.201

    Agent-Based Modeling of Intracellular Transport

    Full text link
    We develop an agent-based model of the motion and pattern formation of vesicles. These intracellular particles can be found in four different modes of (undirected and directed) motion and can fuse with other vesicles. While the size of vesicles follows a log-normal distribution that changes over time due to fusion processes, their spatial distribution gives rise to distinct patterns. Their occurrence depends on the concentration of proteins which are synthesized based on the transcriptional activities of some genes. Hence, differences in these spatio-temporal vesicle patterns allow indirect conclusions about the (unknown) impact of these genes. By means of agent-based computer simulations we are able to reproduce such patterns on real temporal and spatial scales. Our modeling approach is based on Brownian agents with an internal degree of freedom, θ\theta, that represents the different modes of motion. Conditions inside the cell are modeled by an effective potential that differs for agents dependent on their value θ\theta. Agent's motion in this effective potential is modeled by an overdampted Langevin equation, changes of θ\theta are modeled as stochastic transitions with values obtained from experiments, and fusion events are modeled as space-dependent stochastic transitions. Our results for the spatio-temporal vesicle patterns can be used for a statistical comparison with experiments. We also derive hypotheses of how the silencing of some genes may affect the intracellular transport, and point to generalizations of the model

    Easy and green route towards nanostructured ZnO as active sensing material with unexpected H2S dosimeter-type behaviour

    Get PDF
    Nanostructured ZnO particles were prepared through a straightforward, quick and low\u2010temperature synthesis route involving coprecipitation of the metal precursor salts with oxalic acid, followed by hydrothermal treatment at 135 or 160 \ub0C. The synthesised nanostructured powders were thoroughly characterised by a wide array of analytical techniques from the morphological (Scanning Electron Microscopy \u2013SEM\u2010, Transmission Electron Microscopy \u2010TEM\u2010, Energy\u2010dispersive X\u2010ray Spectroscopy \u2010EDXS\u2010), structural (Powder X\u2010Ray Diffraction \u2010PXRD\u2010, Selected Area Electron Diffraction \u2010SAED\u2010), compositional (X\u2010ray Photoelectron Spectroscopy \u2010XPS\u2010) and physical (thermal stability) point of view. As far as functional applications are concerned, the powders were tested as gas sensor materials for H2S detection. Thereby these ZnO particles show unexpected gas dosimeter behaviour at 150 \ub0C. Based on these observations and on a comparison with literature a new model for the interaction of ZnO nanostructures with H2S is proposed
    • …
    corecore