220,797 research outputs found

    AsmetaF: A Flattener for the ASMETA Framework

    Get PDF
    Abstract State Machines (ASMs) have shown to be a suitable high-level specification method for complex, even industrial, systems; the ASMETA framework, supporting several validation and verification activities on ASM models, is an example of a formal integrated development environment. Although ASMs allow modeling complex systems in a rather concise way -and this is advantageous for specification purposes-, such concise notation is in general a problem for verification activities as model checking and theorem proving that rely on tools accepting simpler notations. In this paper, we propose a flattener tool integrated in the ASMETA framework that transforms a general ASM model in a flattened model constituted only of update, parallel, and conditional rules; such model is easier to map to notations of verification tools. Experiments show the effect of applying the tool to some representative case studies of the ASMETA repository.Comment: In Proceedings F-IDE 2018, arXiv:1811.09014. The first two authors are supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST. Funding Reference number: 10.13039/501100009024 ERAT

    Model-Based Development of Distributed Embedded Systems by the Example of the Scicos/SynDEx Framework

    Full text link
    The embedded systems engineering industry faces increasing demands for more functionality, rapidly evolving components, and shrinking schedules. Abilities to quickly adapt to changes, develop products with safe design, minimize project costs, and deliver timely are needed. Model-based development (MBD) follows a separation of concerns by abstracting systems with an appropriate intensity. MBD promises higher comprehension by modeling on several abstraction-levels, formal verification, and automated code generation. This thesis demonstrates MBD with the Scicos/SynDEx framework on a distributed embedded system. Scicos is a modeling and simulation environment for hybrid systems. SynDEx is a rapid prototyping integrated development environment for distributed systems. Performed examples implement well-known control algorithms on a target system containing several networked microcontrollers, sensors, and actuators. The addressed research question tackles the feasibility of MBD for medium-sized embedded systems. In the case of single-processor applications experiments show that the comforts of tool-provided simulation, verification, and code-generation have to be weighed against an additional memory consumption in dynamic and static memory compared to a hand-written approach. Establishing a near-seamless modeling-framework with Scicos/SynDEx is expensive. An increased development effort indicates a high price for developing single applications, but might pay off for product families. A further drawback was that the distributed code generated with SynDEx could not be adapted to microcontrollers without a significant alteration of the scheduling tables. The Scicos/SynDEx framework forms a valuable tool set that, however, still needs many improvements. Therefore, its usage is only recommended for experimental purposes.Comment: 146 pages, Master's Thesi

    Verification of Annotated Models from Executions

    Get PDF
    Simulations can help enhance confidence in system designs, but they provide almost no formal guarantees. In this paper, we present a simulation-based verification framework for embedded systems described by nonlinear, switched systems. In our framework, users are required to annotate the dynamics in each control mode of a switched system by something we call a “discrepancy function” that formally measures the nature trajectory convergence/divergence in the system. Discrepancy functions generalize other measures of trajectory convergence and divergence like Contraction Metrics and Incremental Lyapunov functions. Exploiting such annotations, we present a sound and relatively complete verification procedure for robustly safe/unsafe systems. We have built a tool based on the framework that is integrated into the popular Simulink/Stateflow modeling environment. Experiments with our prototype tool show that the approach (a) outperforms other verification tools on standard linear and nonlinear benchmarks, (b) scales reasonably to larger dimensional systems and to longer time horizons, and (c) applies to models with diverging trajectories and unknown parameters.National Science Foundation / NSF CNS 1016791Ope

    A Case Study on Formal Verification of Self-Adaptive Behaviors in a Decentralized System

    Full text link
    Self-adaptation is a promising approach to manage the complexity of modern software systems. A self-adaptive system is able to adapt autonomously to internal dynamics and changing conditions in the environment to achieve particular quality goals. Our particular interest is in decentralized self-adaptive systems, in which central control of adaptation is not an option. One important challenge in self-adaptive systems, in particular those with decentralized control of adaptation, is to provide guarantees about the intended runtime qualities. In this paper, we present a case study in which we use model checking to verify behavioral properties of a decentralized self-adaptive system. Concretely, we contribute with a formalized architecture model of a decentralized traffic monitoring system and prove a number of self-adaptation properties for flexibility and robustness. To model the main processes in the system we use timed automata, and for the specification of the required properties we use timed computation tree logic. We use the Uppaal tool to specify the system and verify the flexibility and robustness properties.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Business Level Service-Oriented Enterprise Application Integration

    Get PDF
    In this paper we propose a new approach for service-oriented enterprise application integration (EAI). Unlike current EAI solutions, which mainly focus on technological aspects, our approach allows business domain experts to get more involved in the integration process. First, we provide a technique for modeling application services at a sufficiently high level of abstraction for business experts to work with. Next, these business experts can model the orchestration as well as the information mappings that are required to achieve their integration goals. Our mediation framework then takes over and realizes the integration solution by transforming these models to existing service orchestration technology

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement

    Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios

    Full text link
    Responses to disastrous events are a challenging problem, because of possible damages on communication infrastructures. For instance, after a natural disaster, infrastructures might be entirely destroyed. Different network paradigms were proposed in the literature in order to deploy adhoc network, and allow dealing with the lack of communications. However, all these solutions focus only on the performance of the network itself, without taking into account the specificities and heterogeneity of the components which use it. This comes from the difficulty to integrate models with different levels of abstraction. Consequently, verification and validation of adhoc protocols cannot guarantee that the different systems will work as expected in operational conditions. However, the DEVS theory provides some mechanisms to allow integration of models with different natures. This paper proposes an integrated simulation architecture based on DEVS which improves the accuracy of ad hoc infrastructure simulators in the case of disaster response scenarios.Comment: Preprint. Unpublishe
    corecore