356,149 research outputs found

    A Theory of Formal Synthesis via Inductive Learning

    Full text link
    Formal synthesis is the process of generating a program satisfying a high-level formal specification. In recent times, effective formal synthesis methods have been proposed based on the use of inductive learning. We refer to this class of methods that learn programs from examples as formal inductive synthesis. In this paper, we present a theoretical framework for formal inductive synthesis. We discuss how formal inductive synthesis differs from traditional machine learning. We then describe oracle-guided inductive synthesis (OGIS), a framework that captures a family of synthesizers that operate by iteratively querying an oracle. An instance of OGIS that has had much practical impact is counterexample-guided inductive synthesis (CEGIS). We present a theoretical characterization of CEGIS for learning any program that computes a recursive language. In particular, we analyze the relative power of CEGIS variants where the types of counterexamples generated by the oracle varies. We also consider the impact of bounded versus unbounded memory available to the learning algorithm. In the special case where the universe of candidate programs is finite, we relate the speed of convergence to the notion of teaching dimension studied in machine learning theory. Altogether, the results of the paper take a first step towards a theoretical foundation for the emerging field of formal inductive synthesis

    Synthesis of Switching Protocols from Temporal Logic Specifications

    Get PDF
    We propose formal means for synthesizing switching protocols that determine the sequence in which the modes of a switched system are activated to satisfy certain high-level specifications in linear temporal logic. The synthesized protocols are robust against exogenous disturbances on the continuous dynamics. Two types of finite transition systems, namely under- and over-approximations, that abstract the behavior of the underlying continuous dynamics are defined. In particular, we show that the discrete synthesis problem for an under-approximation can be formulated as a model checking problem, whereas that for an over-approximation can be transformed into a two-player game. Both of these formulations are amenable to efficient, off-the-shelf software tools. By construction, existence of a discrete switching strategy for the discrete synthesis problem guarantees the existence of a continuous switching protocol for the continuous synthesis problem, which can be implemented at the continuous level to ensure the correctness of the nonlinear switched system. Moreover, the proposed framework can be straightforwardly extended to accommodate specifications that require reacting to possibly adversarial external events. Finally, these results are illustrated using three examples from different application domains

    Decentralized Abstractions and Timed Constrained Planning of a General Class of Coupled Multi-Agent Systems

    Full text link
    This paper presents a fully automated procedure for controller synthesis for a general class of multi-agent systems under coupling constraints. Each agent is modeled with dynamics consisting of two terms: the first one models the coupling constraints and the other one is an additional bounded control input. We aim to design these inputs so that each agent meets an individual high-level specification given as a Metric Interval Temporal Logic (MITL). Furthermore, the connectivity of the initially connected agents, is required to be maintained. First, assuming a polyhedral partition of the workspace, a novel decentralized abstraction that provides controllers for each agent that guarantee the transition between different regions is designed. The controllers are the solution of a Robust Optimal Control Problem (ROCP) for each agent. Second, by utilizing techniques from formal verification, an algorithm that computes the individual runs which provably satisfy the high-level tasks is provided. Finally, simulation results conducted in MATLAB environment verify the performance of the proposed framework

    Compositional Reactive Synthesis for Multi-Agent Systems

    Get PDF
    With growing complexity of systems and guarantees they are required to provide, the need for automated and formal design approaches that can guarantee safety and correctness of the designed system is becoming more evident. To this end, an ambitious goal in system design and control is to automatically synthesize the system from a high-level specification given in a formal language such as linear temporal logic. The goal of this dissertation is to investigate and develop the necessary tools and methods for automated synthesis of controllers from high-level specifications for multi-agent systems. We consider systems where a set of controlled agents react to their environment that includes other uncontrolled, dynamic and potentially adversarial agents. We are particularly interested in studying how the existing structure in systems can be exploited to achieve more efficient synthesis algorithms through compositional reasoning. We explore three different frameworks for compositional synthesis of controllers for multi-agent systems. In the first framework, we decompose the global specification into local ones, we then refine the local specifications until they become realizable, and we show that under certain conditions, the strategies synthesized for the local specifications guarantee the satisfaction of the global specification. In the second framework, we show how parametric and reactive controllers can be specified and synthesized, and how they can be automatically composed to enforce a high-level objective. Finally, in the third framework, we focus on a special but practically useful class of multi-agent systems, and show how by taking advantage of the structure in the system and its objective we can achieve significantly better scalability and can solve problems where the centralized synthesis algorithm is infeasible

    Automatic Inference of High-Level Network Intents by Mining Forwarding Patterns

    Full text link
    There is a semantic gap between the high-level intents of network operators and the low-level configurations that achieve the intents. Previous works tried to bridge the gap using verification or synthesis techniques, both requiring formal specifications of the intended behavior which are rarely available or even known in the real world. This paper discusses an alternative approach for bridging the gap, namely to infer the high-level intents from the low-level network behavior. Specifically, we provide Anime, a framework and a tool that given a set of observed forwarding behavior, automatically infers a set of possible intents that best describe all observations. Our results show that Anime can infer high-quality intents from the low-level forwarding behavior with acceptable performance.Comment: SOSR 202

    SAFETY-GUARANTEED TASK PLANNING FOR BIPEDAL NAVIGATION IN PARTIALLY OBSERVABLE ENVIRONMENTS

    Get PDF
    Bipedal robots are becoming more capable as basic hardware and control challenges are being overcome, however reasoning about safety at the task and motion planning levels has been largely underexplored. I would like to make key steps towards guaranteeing safe locomotion in cluttered environments in the presence of humans or other dynamic obstacles by designing a hierarchical task planning framework that incorporates safety guarantees at each level. This layered planning framework is composed of a coarse high-level symbolic navigation planner and a lower-level local action planner. A belief abstraction at the global navigation planning level enables belief estimation of non-visible dynamic obstacle states and guarantees navigation safety with collision avoidance. Both planning layers employ linear temporal logic for a reactive game synthesis between the robot and its environment while incorporating lower level safe locomotion keyframe policies into formal task specification design. The high-level symbolic navigation planner has been extended to leverage the capabilities of a heterogeneous multi-agent team to resolve environment assumption violations that appear at runtime. Modifications in the navigation planner in conjunction with a coordination layer allow each agent to guarantee immediate safety and eventual task completion in the presence of an assumption violation if another agent exists that can resolve said violation, e.g. a door is closed that another dexterous agent can open. The planning framework leverages the expressive nature and formal guarantees of LTL to generate provably correct controllers for complex robotic systems. The use of belief space planning for dynamic obstacle belief tracking and heterogeneous robot capabilities to assist one another when environment assumptions are violated allows the planning framework to reduce the conservativeness traditionally associated with using formal methods for robot planning.M.S

    Computer Assisted Design and Integration of FPGA Accelerators in Aerospace Systems

    Get PDF
    The integration of Field Programmable Gate Arrays (FPGAs) in an aerospace system allows to improve its efficiency and its flexibility thanks to their programmability. To exploit these devices, the designer has to identify the functionalities that have to be executed on them and provide their implementation by means of Hardware Description Languages. Generating these descriptions for a software developer could be a very difficult task because of the different programming paradigms of software programs and hardware descriptions. To facilitate the developer in this activity, High Level Synthesis techniques have been developed aiming at (semi-)automatically generating hardware implementations of specifications written in high level languages (e.g., C). State of the art tools implementing such methodologies have not been designed for the integration with aerospace systems design flows, so significant adaptations could be required to the designer for integrating the hardware implementations with the rest of the design solution. In this paper the integration of a High Level Synthesis design flow in the TASTE framework (http://taste.tuxfamily.org) is presented. TASTE is a set of freely available tools for the development of real time embedded systems developed by the European Space Agency together with a set of its industrial partners. This framework allows to integrate specifications described in different languages (e.g., C, ADA, Simulink, SDL) by means of formal languages (AADL and ASN.1) and to early verify the correctness of the produced solutions. TASTE has been extended with Bambu (http://panda.dei.polimi.it), a tool for the High Level Synthesis developed at Politecnico di Milano. In this way the TASTE users have the possibility to specify which functionalities, provided by means of high level languages such C, have to be implemented in hardware on the FPGA without having to directly provide the hardware implementations. Thanks to the integration of the High Level Synthesis tool indeed, the framework is able not only to produce the hardware implementations, but also to integrate them in the rest of the aerospace system by automatically generating the whole architecture to be implemented on the FPGA. This architecture contains not only the implementation of the hardware accelerators, but also of the components required to transfer the data from and to the rest of the system and to correctly manage their size and endianness. The application of the extended framework to a real case study shows its effective usability

    Statistical properties and privacy guarantees of an original distance-based fully synthetic data generation method

    Full text link
    Introduction: The amount of data generated by original research is growing exponentially. Publicly releasing them is recommended to comply with the Open Science principles. However, data collected from human participants cannot be released as-is without raising privacy concerns. Fully synthetic data represent a promising answer to this challenge. This approach is explored by the French Centre de Recherche en {\'E}pid{\'e}miologie et Sant{\'e} des Populations in the form of a synthetic data generation framework based on Classification and Regression Trees and an original distance-based filtering. The goal of this work was to develop a refined version of this framework and to assess its risk-utility profile with empirical and formal tools, including novel ones developed for the purpose of this evaluation.Materials and Methods: Our synthesis framework consists of four successive steps, each of which is designed to prevent specific risks of disclosure. We assessed its performance by applying two or more of these steps to a rich epidemiological dataset. Privacy and utility metrics were computed for each of the resulting synthetic datasets, which were further assessed using machine learning approaches.Results: Computed metrics showed a satisfactory level of protection against attribute disclosure attacks for each synthetic dataset, especially when the full framework was used. Membership disclosure attacks were formally prevented without significantly altering the data. Machine learning approaches showed a low risk of success for simulated singling out and linkability attacks. Distributional and inferential similarity with the original data were high with all datasets.Discussion: This work showed the technical feasibility of generating publicly releasable synthetic data using a multi-step framework. Formal and empirical tools specifically developed for this demonstration are a valuable contribution to this field. Further research should focus on the extension and validation of these tools, in an effort to specify the intrinsic qualities of alternative data synthesis methods.Conclusion: By successfully assessing the quality of data produced using a novel multi-step synthetic data generation framework, we showed the technical and conceptual soundness of the Open-CESP initiative, which seems ripe for full-scale implementation
    corecore