1,466 research outputs found

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    vSPARQL: A View Definition Language for the Semantic Web

    Get PDF
    Translational medicine applications would like to leverage the biological and biomedical ontologies, vocabularies, and data sets available on the semantic web. We present a general solution for RDF information set reuse inspired by database views. Our view definition language, vSPARQL, allows applications to specify the exact content that they are interested in and how that content should be restructured or modified. Applications can access relevant content by querying against these view definitions. We evaluate the expressivity of our approach by defining views for practical use cases and comparing our view definition language to existing query languages

    Foundational Challenges in Automated Data and Ontology Cleaning in the Semantic Web

    Get PDF
    The application of automated reasoning systems to data cleaning in the Semantic Web raises many challenges on the foundational basis of cleaning agent design. The authors discuss some of them. They finally argue that logic trust in the Semantic Web can only be achieved if it is based on certified reasoning.Junta de Andalucía TIC-13

    Reasoning-Supported Quality Assurance for Knowledge Bases

    Get PDF
    The increasing application of ontology reuse and automated knowledge acquisition tools in ontology engineering brings about a shift of development efforts from knowledge modeling towards quality assurance. Despite the high practical importance, there has been a substantial lack of support for ensuring semantic accuracy and conciseness. In this thesis, we make a significant step forward in ontology engineering by developing a support for two such essential quality assurance activities

    Biomedical ontology alignment: An approach based on representation learning

    Get PDF
    While representation learning techniques have shown great promise in application to a number of different NLP tasks, they have had little impact on the problem of ontology matching. Unlike past work that has focused on feature engineering, we present a novel representation learning approach that is tailored to the ontology matching task. Our approach is based on embedding ontological terms in a high-dimensional Euclidean space. This embedding is derived on the basis of a novel phrase retrofitting strategy through which semantic similarity information becomes inscribed onto fields of pre-trained word vectors. The resulting framework also incorporates a novel outlier detection mechanism based on a denoising autoencoder that is shown to improve performance. An ontology matching system derived using the proposed framework achieved an F-score of 94% on an alignment scenario involving the Adult Mouse Anatomical Dictionary and the Foundational Model of Anatomy ontology (FMA) as targets. This compares favorably with the best performing systems on the Ontology Alignment Evaluation Initiative anatomy challenge. We performed additional experiments on aligning FMA to NCI Thesaurus and to SNOMED CT based on a reference alignment extracted from the UMLS Metathesaurus. Our system obtained overall F-scores of 93.2% and 89.2% for these experiments, thus achieving state-of-the-art results

    Maintaining Structured Experiences for Robots via Human Demonstrations: An Architecture To Convey Long-Term Robot\u2019s Beliefs

    Get PDF
    This PhD thesis presents an architecture for structuring experiences, learned through demonstrations, in a robot memory. To test our architecture, we consider a specific application where a robot learns how objects are spatially arranged in a tabletop scenario. We use this application as a mean to present a few software development guidelines for building architecture for similar scenarios, where a robot is able to interact with a user through a qualitative shared knowledge stored in its memory. In particular, the thesis proposes a novel technique for deploying ontologies in a robotic architecture based on semantic interfaces. To better support those interfaces, it also presents general-purpose tools especially designed for an iterative development process, which is suitable for Human-Robot Interaction scenarios. We considered ourselves at the beginning of the first iteration of the design process, and our objective was to build a flexible architecture through which evaluate different heuristic during further development iterations. Our architecture is based on a novel algorithm performing a oneshot structured learning based on logic formalism. We used a fuzzy ontology for dealing with uncertain environments, and we integrated the algorithm in the architecture based on a specific semantic interface. The algorithm is used for building experience graphs encoded in the robot\u2019s memory that can be used for recognising and associating situations after a knowledge bootstrapping phase. During this phase, a user is supposed to teach and supervise the beliefs of the robot through multimodal, not physical, interactions. We used the algorithm to implement a cognitive like memory involving the encoding, storing, retrieving, consolidating, and forgetting behaviours, and we showed that our flexible design pattern could be used for building architectures where contextualised memories are managed with different purposes, i.e. they contains representation of the same experience encoded with different semantics. The proposed architecture has the main purposes of generating and maintaining knowledge in memory, but it can be directly interfaced with perceiving and acting components if they provide, or require, symbolical knowledge. With the purposes of showing the type of data considered as inputs and outputs in our tests, this thesis also presents components to evaluate point clouds, engage dialogues, perform late data fusion and simulate the search of a target position. Nevertheless, our design pattern is not meant to be coupled only with those components, which indeed have a large room of improvement

    Blending under deconstruction

    Get PDF
    n/

    Automatic & Semi-Automatic Methods for Supporting Ontology Change

    Get PDF

    A logic-algebraic tool for reasoning with Knowledge-Based Systems

    Get PDF
    A detailed exposition of foundations of a logic-algebraic model for reasoning with knowledge bases speci ed by propositional (Boolean) logic is presented. The model is conceived from the logical translation of usual derivatives on polynomials (on residue rings) which is used to design a new inference rule of algebro-geometric inspiration. Soundness and (refutational) completeness of the rule are proved. Some applications of the tools introduced in the paper are shown.Ministerio de Economía y Competitividad TIN2013-41086-
    • …
    corecore