40 research outputs found

    Prediction of container filling for the selective waste collection in Algeciras (Spain)

    Get PDF
    14th Conference on Transport Engineering: 6th – 8th July 2021The aim of this study is to create an intelligent system that improves the efficiency of garbage collection, (cardboard waste, in this particular case). The number of cardboard containers to be collected each day will be determined based on a prediction made on the filled volume recorded in each container. It will be reflected in the cost and fuel savings, reducing emissions and contributing to environmental sustainability. These results will allow planning the sequence of waste removal, which means the optimal collection route considering restrictive parameters such as the type of truck, the location of containers, collection times by zones, and the availability of working staff. A filling prediction system is proposed based on real historical data provided by the current waste collection company in Algeciras (ARCGISA). To achieve this objective, an intelligent system is designed using predictive analytics and several methods based on machine learning, modelling the collection system as a classification model, comparing the results from a statistical point of view (using sensitivity, specificity, etc.). The results obtained with the best-Tested method indicate an improvement average rate of 26% in sensitivity performance index and 67% in specificity performance index. Currently, waste collection is carried out without predictive analysis. The relevance of an efficient waste collection system is becoming increasingly important. Achieving optimal waste collection will result in improved service to citizens, cost savings for the administration, and significant environmental improvements. © 2021 Elsevier B.V.. All rights reserve

    An improved machine learning model Shapley value-based to forecast demand for aquatic product supply chain

    Get PDF
    Previous machine learning models usually faced the problem of poor performance, especially for aquatic product supply chains. In this study, we proposed a coupling machine learning model Shapely value-based to predict the CCL demand of aquatic products (CCLD-AP). We first select the key impact indicators through the gray correlation degree and finally determine the indicator system. Secondly, gray prediction, principal component regression analysis prediction, and BP neural network models are constructed from the perspective of time series, linear regression and nonlinear, combined with three single forecasts, a combined forecasting model is constructed, the error analysis of all prediction model results shows that the combined prediction results are more accurate. Finally, the trend extrapolation method and time series are combined to predict the independent variable influencing factor value and the CCLD-AP from 2023 to 2027. Our study can provide a reference for the progress of CCLD-AP in ports and their hinterland cities

    Modeling travel demand and crashes at macroscopic and microscopic levels

    Get PDF
    Accurate travel demand / Annual Average Daily Traffic (AADT) and crash predictions helps planners to plan, propose and prioritize infrastructure projects for future improvements. Existing methods are based on demographic characteristics, socio-economic characteristics, and on-network (includes traffic volume) characteristics. A few methods have considered land use characteristics but along with other predictor variables. A strong correlation exists between land use characteristics and these other predictor variables. None of the past research has attempted to directly evaluate the effect and influence of land use characteristics on travel demand/AADT and crashes at both area and link level. These land use characteristics may be easy to capture and may have better predictive capabilities than other variables. The primary focus of this research is to develop macroscopic and microscopic models to estimate travel demand and crashes with an emphasis on land use characteristics. The proposed methodology involves development of macroscopic (area level) and microscopic (link level) models by incorporating scientific principles, statistical and artificial intelligent techniques. The microscopic models help evaluate the link level performance, whereas the macroscopic models help evaluate the overall performance of an area. The method for developing macroscopic models differs from microscopic models. The areas of land use characteristics were considered in developing macroscopic models, whereas the principle of demographic gravitation is incorporated in developing microscopic models. Statistical and back-propagation neural network (BPNN) techniques are used in developing the models. The results obtained indicate that statistical and neural network models ensured significantly lower errors. Overall, the BPNN models yielded better results in estimating travel demand and crashes than any other approach considered in this research. The neural network approach can be particularly suitable for their better predictive capability, whereas the statistical models could be used for mathematical formulation or understanding the role of explanatory variables in estimating AADT. Results obtained also indicate that land use characteristics have better predictive capabilities than other variables considered in this research. The outcomes can be used in safety conscious planning, land use decisions, long range transportation plans, prioritization of projects (short term and long term), and, to proactively apply safety treatments

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Advanced Approaches Applied to Materials Development and Design Predictions

    Get PDF
    This thematic issue on advanced simulation tools applied to materials development and design predictions gathers selected extended papers related to power generation systems, presented at the XIX International Colloquium on Mechanical Fatigue of Metals (ICMFM XIX), organized at University of Porto, Portugal, in 2018. In this issue, the limits of the current generation of materials are explored, which are continuously being reached according to the frontier of hostile environments, whether in the aerospace, nuclear, or petrochemistry industry, or in the design of gas turbines where efficiency of energy production and transformation demands increased temperatures and pressures. Thus, advanced methods and applications for theoretical, numerical, and experimental contributions that address these issues on failure mechanism modeling and simulation of materials are covered. As the Guest Editors, we would like to thank all the authors who submitted papers to this Special Issue. All the papers published were peer-reviewed by experts in the field whose comments helped to improve the quality of the edition. We also would like to thank the Editorial Board of Materials for their assistance in managing this Special Issue

    A Practical Estimation Method of Inland Ship Speed Under Complex and Changeful Navigation Environment

    Get PDF
    The complexity and changefulness of inland navigation environment in space and time makes it hard to guarantee the applicability and accuracy of existing ship speed models. In this paper, a novel method for inland ship speed modelling under complex and changeful navigation environment is proposed. Firstly, an unsupervised machine learning algorithm, Density-Based Spatial Clustering of Application with Noise (DBSCAN), is utilized to cluster the environmental data including water level, water speed, wind speed and wind direction, to get the segment division information, which greatly helps reduce the influence of other uncertain environmental factors on the speed model. Then, Generalized Regression Neural Network (GRNN) is tailored and employed to build the ship speed estimation model with multiple input variables. Finally, a detailed case study of a ship sailing in the Yangtze River trunk line is conducted to validate the proposed methods. The results show that the ship speed model established based on machine learning methods works effectively in speed estimation and analysis. Moreover, compared with other regression methods and neural networks, the proposed GRNN model has the best performance in ship speed modelling

    Prediction of wheel and rail wear using artificial neural networks

    Get PDF
    The prediction of wheel wear is a significant issue in railway vehicles. It is correlated with safety against derailment, economy, ride comfort, and planning of maintenance interventions, and it can result in delay, and costs if it is not predicted and controlled in an effective way. However, the prediction of wheel and rail wear is still a great challenge for railway systems. Therefore, the main aim of this thesis is to develop a method for predicting wheel wear using artificial neural networks. Initial tests were carried out using a pin-on-disc machine and this data was used to establish how wear can be measured using an Alicona profilometer. A new method has been developed for detailed wheel wear and rail wear measurements using ‘Replica’ material which was applied to the wheel and rail surfaces of the test rig to make a copy of both surfaces. The replica samples were scanned using an optical profilometer and the results were processed to establish wheel wear and rail wear. The effect of load, and yaw angle on wheel wear and rail wear were examined. The effect of dry, wet, lubricated, and sanded conditions on wheel wear and rail wear were also investigated. A Nonlinear Autoregressive model with eXogenous input neural network (NARXNN) was developed to predict the wheel and rail wear for the twin disc rig experiments. The NARXNN was used to predict wheel wear and rail wear under deferent surface conditions such as dry, wet, lubricated, and sanded conditions. The neural network model was developed to predict wheel wear in case of changing parameters such as speed and suspension parameters. VAMPIRE vehicle dynamic software was used to produce the vehicle performance data to train, validate, and test the neural network. Three types of neural network were developed to predict the wheel wear: NARXNN, backpropagation neural network (BPNN), and radial basis function neural network (RBFNN). The wheel wear was calculated using an energy dissipation approach and contact position on straight track. The work is focused on wheel wear and the neural network prediction of rail wear was only carried out in connection with the twin disk wear tests. This thesis examines the effect of neural network parameters such as spread, goal, maximum number of neurons, and number of neurons to add between displays on wheel wear prediction. The neural network simulation results were implemented using the Matlab program. The percentage error for wheel and rail wear prediction was calculated. Also, the accuracy of wheel and rail wear prediction using the neural network was investigated and assessed in terms of mean absolute percentage error (MAPE). The results reveal that the neural network can be used efficiently to predict wheel and rail wear. Further work could include rail wear and prediction on a curved track

    Artificial Intelligence Applications to Critical Transportation Issues

    Full text link

    Explainability techniques applied to road traffic forecasting using Graph Neural Network models

    Get PDF
    In recent years, several new Artificial Intelligence methods have been developed to make models more explainable and interpretable. The techniques essentially deal with the implementation of transparency and traceability of black box machine learning methods. Black box refers to the inability to explain why the model turns the input into the output, which may be problematic in some fields. To overcome this problem, our approach provides a comprehensive combination of predictive and explainability techniques. Firstly, we compared statistical regression, classic machine learning and deep learning models, reaching the conclusion that models based on deep learning exhibit greater accuracy. Of the great variety of deep learning models, the best predictive model in spatio-temporal traffic datasets was found to be the Adaptive Graph Convolutional Recurrent Network. Regarding the explainability technique, GraphMask shows a notably higher fidelity metric than other methods. The integration of both techniques was tested by means of experimental results, concluding that our approach improves deep learning model accuracy, making such models more transparent and interpretable. It allows us to discard up to 95% of the nodes used, facilitating an analysis of its behavior and thus improving the understanding of the model
    corecore