624 research outputs found

    Internet of Things Software and Hardware Architectures and Their Impacts on Forensic Investigations: Current Approaches and Challenges

    Get PDF
    The never-before-seen proliferation of interconnected low-power computing devices, patently dubbed the Internet of Things (IoT), is revolutionizing how people, organizations, and malicious actors interact with one another and the Internet. Many of these devices collect data in different forms, be it audio, location data, or user commands. In civil or criminal nature investigations, the data collected can act as evidence for the prosecution or the defense. This data can also be used as a component of cybersecurity efforts. When data is extracted from these devices, investigators are expected to do so using proven methods. Still, unfortunately, given the heterogeneity in the types of devices that need to be examined, few widely agreed-upon standards exist. In this paper, we look at some of the architectures, current frameworks, and methods available to perform forensic analysis of IoT devices to provide a roadmap for investigators and researchers to form the basis of an investigation

    Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future

    Full text link
    Given the exponential expansion of the internet, the possibilities of security attacks and cybercrimes have increased accordingly. However, poorly implemented security mechanisms in the Internet of Things (IoT) devices make them susceptible to cyberattacks, which can directly affect users. IoT forensics is thus needed for investigating and mitigating such attacks. While many works have examined IoT applications and challenges, only a few have focused on both the forensic and security issues in IoT. Therefore, this paper reviews forensic and security issues associated with IoT in different fields. Future prospects and challenges in IoT research and development are also highlighted. As demonstrated in the literature, most IoT devices are vulnerable to attacks due to a lack of standardized security measures. Unauthorized users could get access, compromise data, and even benefit from control of critical infrastructure. To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system by designing a FLIP-based system that is highly scalable and adaptable. Utilizing a blockchain-based authentication mechanism with a multi-chain structure can provide additional security protection between different trust domains. Deep learning can be utilized to develop a network forensics framework with a high-performing system for detecting and tracking cyberattack incidents. Moreover, researchers should consider limiting the amount of data created and delivered when using big data to develop IoT-based smart systems. The findings of this review will stimulate academics to seek potential solutions for the identified issues, thereby advancing the IoT field.Comment: 77 pages, 5 figures, 5 table

    Rethinking Digital Forensics

    Get PDF
    © IAER 2019In the modern socially-driven, knowledge-based virtual computing environment in which organisations are operating, the current digital forensics tools and practices can no longer meet the need for scientific rigour. There has been an exponential increase in the complexity of the networks with the rise of the Internet of Things, cloud technologies and fog computing altering business operations and models. Adding to the problem are the increased capacity of storage devices and the increased diversity of devices that are attached to networks, operating autonomously. We argue that the laws and standards that have been written, the processes, procedures and tools that are in common use are increasingly not capable of ensuring the requirement for scientific integrity. This paper looks at a number of issues with current practice and discusses measures that can be taken to improve the potential of achieving scientific rigour for digital forensics in the current and developing landscapePeer reviewe

    Systematic Review on Security and Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities

    Get PDF
    Edge computing is a promising paradigm that enhances the capabilities of cloud computing. In order to continue patronizing the computing services, it is essential to conserve a good atmosphere free from all kinds of security and privacy breaches. The security and privacy issues associated with the edge computing environment have narrowed the overall acceptance of the technology as a reliable paradigm. Many researchers have reviewed security and privacy issues in edge computing, but not all have fully investigated the security and privacy requirements. Security and privacy requirements are the objectives that indicate the capabilities as well as functions a system performs in eliminating certain security and privacy vulnerabilities. The paper aims to substantially review the security and privacy requirements of the edge computing and the various technological methods employed by the techniques used in curbing the threats, with the aim of helping future researchers in identifying research opportunities. This paper investigate the current studies and highlights the following: (1) the classification of security and privacy requirements in edge computing, (2) the state of the art techniques deployed in curbing the security and privacy threats, (3) the trends of technological methods employed by the techniques, (4) the metrics used for evaluating the performance of the techniques, (5) the taxonomy of attacks affecting the edge network, and the corresponding technological trend employed in mitigating the attacks, and, (6) research opportunities for future researchers in the area of edge computing security and privacy

    A Systematic Literature Review on Automotive Digital Forensics: Challenges, Technical Solutions and Data Collection

    Get PDF
    A modern vehicle has a complex internal architecture and is wirelessly connected to the Internet, other vehicles, and the infrastructure. The risk of cyber attacks and other criminal incidents along with recent road accidents caused by autonomous vehicles calls for more research on automotive digital forensics. Failures in automated driving functions can be caused by hardware and software failures and cyber security issues. Thus, it is imperative to be able to determine and investigate the cause of these failures, something which requires trustable data. However, automotive digital forensics is a relatively new field for the automotive where most existing self-monitoring and diagnostic systems in vehicles only monitor safety-related events. To the best of our knowledge, our work is the first systematic literature review on the current research within this field. We identify and assess over 300 papers published between 2006 - 2021 and further map the relevant papers to different categories based on identified focus areas to give a comprehensive overview of the forensics field and the related research activities. Moreover, we identify forensically relevant data from the literature, link the data to categories, and further map them to required security properties and potential stakeholders. Our categorization makes it easy for practitioners and researchers to quickly find relevant work within a particular sub-field of digital forensics. We believe our contributions can guide digital forensic investigations in automotive and similar areas, such as cyber-physical systems and smart cities, facilitate further research, and serve as a guideline for engineers implementing forensics mechanisms

    Online Privacy Challenges and their Forensic Solutions

    Get PDF
    In the digital age, internet users are exposed to privacy issues online. Few rarely know when someone else is eavesdropping or about to scam them. Companies, governments, and individual internet users are all vulnerable to security breaches due to the challenges of online privacy ranging from trust and hierarchical control to financial losses. As systems advance, people are optimistic that forensic science will provide long-term interventions that surpass the current solutions, including setting stronger passwords and firewall protection. The future of online privacy is changing, and more practical interventions, such as email, malware, mobile, and network forensics, must be integrated, reducing privacy issues online

    Machine Learning Approach to Mobile Forensics Framework for Cyber Crime Detection in Nigeria

    Get PDF
    The mobile Cyber Crime detection is challenged by number of mobile devices (internet of things), large and complex data, the size, the velocity, the nature and the complexity of the data and devices has become so high that data mining techniques are no more efficient since they cannot handle Big Data and internet of things. The aim of this research work was to develop a mobile forensics framework for cybercrime detection using machine learning approach. It started when call was detected and this detection is made by machine learning algorithm furthermore intelligent mass media towers and satellite that was proposed in this work has the ability to classified calls whether is a threat or not and send signal directly to Nigerian communication commission (NCC) forensic lab for necessary action
    corecore