284 research outputs found

    A fog computing solution for context-based privacy leakage detection for android healthcare devices

    Get PDF
    Intelligent medical service system integrates wireless internet of things (WIoT), including medical sensors, wireless communications, and middleware techniques, so as to collect and analyze patients' data to examine their physical conditions by many personal health devices (PHDs) in real time. However, large amount of malicious codes on the Android system can compromise consumers' privacy, and further threat the hospital management or even the patients' health. Furthermore, this sensor-rich system keeps generating large amounts of data and saturates the middleware system. To address these challenges, we propose a fog computing security and privacy protection solution. Specifically, first, we design the security and privacy protection framework based on the fog computing to improve tele-health and tele-medicine infrastructure. Then, we propose a context-based privacy leakage detection method based on the combination of dynamic and static information. Experimental results show that the proposed method can achieve higher detection accuracy and lower energy consumption compared with other state-of-art methods.This work was supported by the National Natural Science Foundation of China (General Program) under Grant No.61572253, the 13th Five-Year Plan Equipment Pre-Research Projects Fund under Grant No.61402420101HK02001, and the Aviation Science Fund under Grant No. 2016ZC52030

    Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future

    Full text link
    Given the exponential expansion of the internet, the possibilities of security attacks and cybercrimes have increased accordingly. However, poorly implemented security mechanisms in the Internet of Things (IoT) devices make them susceptible to cyberattacks, which can directly affect users. IoT forensics is thus needed for investigating and mitigating such attacks. While many works have examined IoT applications and challenges, only a few have focused on both the forensic and security issues in IoT. Therefore, this paper reviews forensic and security issues associated with IoT in different fields. Future prospects and challenges in IoT research and development are also highlighted. As demonstrated in the literature, most IoT devices are vulnerable to attacks due to a lack of standardized security measures. Unauthorized users could get access, compromise data, and even benefit from control of critical infrastructure. To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system by designing a FLIP-based system that is highly scalable and adaptable. Utilizing a blockchain-based authentication mechanism with a multi-chain structure can provide additional security protection between different trust domains. Deep learning can be utilized to develop a network forensics framework with a high-performing system for detecting and tracking cyberattack incidents. Moreover, researchers should consider limiting the amount of data created and delivered when using big data to develop IoT-based smart systems. The findings of this review will stimulate academics to seek potential solutions for the identified issues, thereby advancing the IoT field.Comment: 77 pages, 5 figures, 5 table

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    Cyber risk in health facilities: A systematic literature review

    Get PDF
    The current world challenges include issues such as infectious disease pandemics, environmental health risks, food safety, and crime prevention. Through this article, a special emphasis is given to one of the main challenges in the healthcare sector during the COVID-19 pandemic, the cyber risk. Since the beginning of the Covid-19 pandemic, the World Health Organization has detected a dramatic increase in the number of cyber-attacks. For instance, in Italy the COVID-19 emergency has heavily affected cybersecurity; from January to April 2020, the total of attacks, accidents, and violations of privacy to the detriment of companies and individuals has doubled. Using a systematic and rigorous approach, this paper aims to analyze the literature on the cyber risk in the healthcare sector to understand the real knowledge on this topic. The findings highlight the poor attention of the scientific community on this topic, except in the United States. The literature lacks research contributions to support cyber risk management in subject areas such as Business, Management and Accounting; Social Science; and Mathematics. This research outlines the need to empirically investigate the cyber risk, giving a practical solution to health facilities. Keywords: cyber risk; cyber-attack; cybersecurity; computer security; COVID-19; coronavirus;information technology risk; risk management; risk assessment; health facilities; healthcare sector;systematic literature review; insuranc

    Security and blockchain convergence with internet of multimedia things : current trends, research challenges and future directions

    Get PDF
    The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security. In this paper, a comprehensive review of the existing literature for IoMT is presented in the context of security and blockchain. The latest literature on all three aspects of security, i.e., authentication, privacy, and trust is provided to explore the challenges experienced by multimedia data. The convergence of blockchain and IoMT along with multimedia-enabled blockchain platforms are discussed for emerging applications. To highlight the significance of this survey, large-scale commercial projects focused on security and blockchain for multimedia applications are reviewed. The shortcomings of these projects are explored and suggestions for further improvement are provided. Based on the aforementioned discussion, we present our own case study for healthcare industry: a theoretical framework having security and blockchain as key enablers. The case study reflects the importance of security and blockchain in multimedia applications of healthcare sector. Finally, we discuss the convergence of emerging technologies with security, blockchain and IoMT to visualize the future of tomorrow's applications. © 2020 Elsevier Lt

    Security in 5G-Enabled Internet of Things Communication: Issues: Challenges, and Future Research Roadmap

    Get PDF
    5G mobile communication systems promote the mobile network to not only interconnect people, but also interconnect and control the machine and other devices. 5G-enabled Internet of Things (IoT) communication environment supports a wide-variety of applications, such as remote surgery, self-driving car, virtual reality, flying IoT drones, security and surveillance and many more. These applications help and assist the routine works of the community. In such communication environment, all the devices and users communicate through the Internet. Therefore, this communication agonizes from different types of security and privacy issues. It is also vulnerable to different types of possible attacks (for example, replay, impersonation, password reckoning, physical device stealing, session key computation, privileged-insider, malware, man-in-the-middle, malicious routing, and so on). It is then very crucial to protect the infrastructure of 5G-enabled IoT communication environment against these attacks. This necessitates the researchers working in this domain to propose various types of security protocols under different types of categories, like key management, user authentication/device authentication, access control/user access control and intrusion detection. In this survey paper, the details of various system models (i.e., network model and threat model) required for 5G-enabled IoT communication environment are provided. The details of security requirements and attacks possible in this communication environment are further added. The different types of security protocols are also provided. The analysis and comparison of the existing security protocols in 5G-enabled IoT communication environment are conducted. Some of the future research challenges and directions in the security of 5G-enabled IoT environment are displayed. The motivation of this work is to bring the details of different types of security protocols in 5G-enabled IoT under one roof so that the future researchers will be benefited with the conducted work
    corecore