76 research outputs found

    Review of Electric Vehicle Charging Technologies, Configurations, and Architectures

    Full text link
    Electric Vehicles (EVs) are projected to be one of the major contributors to energy transition in the global transportation due to their rapid expansion. The EVs will play a vital role in achieving a sustainable transportation system by reducing fossil fuel dependency and greenhouse gas (GHG) emissions. However, high level of EVs integration into the distribution grid has introduced many challenges for the power grid operation, safety, and network planning due to the increase in load demand, power quality impacts and power losses. An increasing fleet of electric mobility requires the advanced charging systems to enhance charging efficiency and utility grid support. Innovative EV charging technologies are obtaining much attention in recent research studies aimed at strengthening EV adoption while providing ancillary services. Therefore, analysis of the status of EV charging technologies is significant to accelerate EV adoption with advanced control strategies to discover a remedial solution for negative grid impacts, enhance desired charging efficiency and grid support. This paper presents a comprehensive review of the current deployment of EV charging systems, international standards, charging configurations, EV battery technologies, architecture of EV charging stations, and emerging technical challenges. The charging systems require a dedicated converter topology, a control strategy and international standards for charging and grid interconnection to ensure optimum operation and enhance grid support. An overview of different charging systems in terms of onboard and off-board chargers, AC-DC and DC-DC converter topologies, and AC and DC-based charging station architectures are evaluated

    Design and Advanced Model Predictive Control of Wide Bandgap Based Power Converters

    Get PDF
    The field of power electronics (PE) is experiencing a revolution by harnessing the superior technical characteristics of wide-band gap (WBG) materials, namely Silicone Carbide (SiC) and Gallium Nitride (GaN). Semiconductor devices devised using WBG materials enable high temperature operation at reduced footprint, offer higher blocking voltages, and operate at much higher switching frequencies compared to conventional Silicon (Si) based counterpart. These characteristics are highly desirable as they allow converter designs for challenging applications such as more-electric-aircraft (MEA), electric vehicle (EV) power train, and the like. This dissertation presents designs of a WBG based power converters for a 1 MW, 1 MHz ultra-fast offboard EV charger, and 250 kW integrated modular motor drive (IMMD) for a MEA application. The goal of these designs is to demonstrate the superior power density and efficiency that are achievable by leveraging the power of SiC and GaN semiconductors. Ultra-fast EV charging is expected to alleviate the challenge of range anxiety , which is currently hindering the mass adoption of EVs in automotive market. The power converter design presented in the dissertation utilizes SiC MOSFETs embedded in a topology that is a modification of the conventional three-level (3L) active neutral-point clamped (ANPC) converter. A novel phase-shifted modulation scheme presented alongside the design allows converter operation at switching frequency of 1 MHz, thereby miniaturizing the grid-side filter to enhance the power density. IMMDs combine the power electronic drive and the electric machine into a single unit, and thus is an efficient solution to realize the electrification of aircraft. The IMMD design presented in the dissertation uses GaN devices embedded in a stacked modular full-bridge converter topology to individually drive each of the motor coils. Various issues and solutions, pertaining to paralleling of GaN devices to meet the high current requirements are also addressed in the thesis. Experimental prototypes of the SiC ultra-fast EV charger and GaN IMMD were built, and the results confirm the efficacy of the proposed designs. Model predictive control (MPC) is a nonlinear control technique that has been widely investigated for various power electronic applications in the past decade. MPC exploits the discrete nature of power converters to make control decisions using a cost function. The controller offers various advantages over, e.g., linear PI controllers in terms of fast dynamic response, identical performance at a reduced switching frequency, and ease of applicability to MIMO applications. This dissertation also investigates MPC for key power electronic applications, such as, grid-tied VSC with an LCL filter and multilevel VSI with an LC filter. By implementing high performance MPC controllers on WBG based power converters, it is possible to formulate designs capable of fast dynamic tracking, high power operation at reduced THD, and increased power density

    Design Space Evaluation for Resonant and Hard-charged Switched Capacitor Converters

    Get PDF
    USB Power Delivery enables a fixed ratio converter to operate over a wider range of output voltages by varying the input voltage. Of the DC/DC step-down converters powered from this type of USB, the hard-charged Switched Capacitor circuit is of interest to industry for its potential high power density. However implementation can be limited by circuit efficiency. In fully resonant mode, the efficiency can be improved while also enabling current regulation. This expands the possible applications into battery chargers and eliminates the need for a two-stage converter.In this work, the trade-off in power loss and area between the hard-charged and fully resonant switched capacitor circuit is explored using a technique that remains agnostic to inductor technology. The loss model for each converter is presented as well as discussion on the restrained design space due to parasitics in the passive components. The results are validated experimentally using GaN-based prototype converters and the respective design spaces are analyzed

    Battery charging system incorporating an equalisation circuit for electric vehicles

    Get PDF
    Ph.D. ThesisHybrid electric vehicles (HEVs) and electric vehicles (EVs) are gaining in popularity mainly due to the fact that unlike combustion-powered vehicles, they do not pollute with greenhouse gases and toxic particles. Most HEVs and EVs are powered by lithium-ion battery packs which have high power density and longer cycle lives compared to other battery types. Each pack is made out of many battery cells in series connected and due to manufacturing tolerances and chemical processes in individual cells each cell has its own electric characteristics. In order to achieve a balanced voltage across all cells, a battery management system (BMS) must be employed to actively monitor and balance the cells voltage. On-board battery chargers are installed in HEVs/EVs to charge the lithium-ion battery pack from the grid. This charger converts AC grid voltage into a controllable DC output voltage, but it adds weight to the vehicle, reducing the overall efficiency of an HEV/EV and also increasing its cost. The aim of researches in multi-functional power electronics is to design systems which perform several different functions at the same time. These systems promise cost and weight reductions since only one circuit is used to conduct different functions. An example is the electric drive in an HEV/EV. On one hand, it propels the car forward when driving, while on the other hand the battery can be charged via a modified electric motor and inverter topology. Thus, no additional on-board charger is required. This thesis describes a new multi-functional circuit for HEVs/EVs which combines the functions of voltage equalisation with grid charging. Compared to a drive system, the proposed circuit does not rely on an electric motor to charge the battery. Various battery chargers and equalisation circuits are first compared. Then, the design of the proposed circuit is described and simulation results are presented for charging and voltage balancing. An experimental test rig was built and practical results have been captured and compared with simulation results for validation. The advantages and disadvantages of the proposed circuit are discussed at the end of the thesis. Keywords- Multi-functional system, Battery charging, Voltage equalisation, Lithium-ion batter

    Design and Testing of a Bidirectional Smart Charger Prototype

    Get PDF
    Rising greenhouse gas emissions, increased fuel costs, and recent technological advances are causing a paradigm shift in the auto-industry away from traditional internal combustion engine vehicles to Electric Vehicles (EVs). Although good for the environment, mass deployment of electric and hybrid electric vehicles has the possibility to cause negative effects to the power grid, such as phase imbalances, voltage deviations, and distribution transformer overloading, since some EVs can potentially draw as high as 19.2 kW in a household from a single-phase outlet. However, if charging is properly controlled and coordinated, EVs have the potential to support the power grid, possibly acting as distributed generation or a storage unit. This thesis aims to address the aforementioned issues by developing a fully-functional “smart” bidirectional EV charger prototype. The term smart refers to the charger’s ability to control the charging and discharging of the battery pack based on the preferences of the car owner, the electricity price at the time of use, battery’s operational constraints, and the distribution system’s requirements at the command of the utility or Local Distribution Company (LDC). Bidirectional refers to power flow, i.e., the charger will employ a design that allows the power to flow from the grid to the battery and vise-versa. The thesis first reviews existing bidirectional charger topologies and smart grid communication technologies. Then, relevant standards, battery technologies, and controller options are discussed; this finally is followed by the charger design process and simulation results to validate the design. Finally, the smart bidirectional charger prototype is presented and tested, to validate and demonstrate its effectiveness in addressing power grid issues

    A User Programmable Battery Charging System

    Get PDF
    Rechargeable batteries are found in almost every battery powered application. Be it portable, stationary or motive applications, these batteries go hand in hand with battery charging systems. With energy harvesting being targeted in this day and age, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system, have to be replenished or recharged once their energy is depleted. Battery charging systems must perform this replenishment by using very fast and efficient methods to extend battery life and to increase periods between charges. In this regard, they have to be versatile, efficient and user programmable to increase their applications in numerous battery powered systems. This is to reduce the cost of using different battery chargers for different types of battery powered applications and also to provide the convenience of rare battery replacement and extend the periods between charges. This thesis proposes a user programmable charging system that can charge a Lithium ion battery from three different input sources, i.e. a wall outlet, a universal serial bus (USB) and an energy harvesting system. The proposed charging system consists of three main building blocks, i.e. a pulse charger, a step down DC to DC converter and a switching network system, to extend the number of applications it can be used for. The switching network system is to allow charging of a battery via an energy harvesting system, while the step down converter is used to provide an initial supply voltage to kick start the energy harvesting system. The pulse charger enables the battery to be charged from a wall outlet or a USB network. It can also be reconfigured to charge a Nickel Metal Hydride battery. The final design is implemented on an IBM 0.18µm process. Experimental results verify the concept of the proposed charging system. The pulse charger is able to be reconfigured as a trickle charger and a constant current charger to charge a Li-ion battery and a Nickel Metal Hydride battery, respectively. The step down converter has a maximum efficiency of 90% at an input voltage of 3V and the charging of the battery via an energy harvesting system is also verified

    Power electronics technologies for renewable energy sources

    Get PDF
    Over the last decades, power grids are facing significant improvements mainly due to the integration of more and more technologies. In particular, renewable energy sources (RES) are contributing to moving from centralized energy production to a new paradigm of distributed energy production. Analyzing in more detail the requirements of the diverse technologies of RES, it is possible to identify a common and key point: power electronics. In fact, power electronics is the key technology to embrace the RES technologies towards controllability and the success of sustainability of power grids. In this context, this book chapter is focused on the analysis of diverse RES technologies from the point of view of power electronics, including the introduction and explanation of the operating principle of the most relevant RES, both in onshore and offshore scenarios. Additionally, are also presented the main topologies of power electronics converters used in the interface of RES.(undefined

    Digital Control of Power Converters and Drives for Hybrid Traction and Wireless Charging

    Get PDF
    In the last years environmental issues and constant increase of fuel and energy cost have been incentivizing the development of low emission and high efficiency systems, either in traction field or in distributed generation systems from renewable energy sources. In the automotive industry, alternative solutions to the standard internal combustion engine (ICE) adopted in the conventional vehicles have been developed, i.e. fuel cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEV) or pure electric vehicles (EVs), also referred as battery powered electric vehicles (BEV). Both academic and industry researchers all over the world are still facing several technical development areas concerning HEV components, system topologies, power converters and control strategies. Efficiency, lifetime, stability and volume issues have moved the attention on a number of bidirectional conversion solutions, both for the energy transfer to/from the storage element and to/from the electric machine side. Moreover, along with the fast growing interest in EVs and PHEVs, wireless charging, as a new way of charging batteries, has drawn the attention of researchers, car manufacturers, and customers recently. Compared to conductive power transfer (usually plug-in), wireless power transfer (WPT) is more convenient, weather proof, and electric shock protected. However, there is still more research work needs to be done to optimize efficiency, cost, increase misalignment tolerance, and reduce size of the WPT chargers. The proposed dissertation describes the work from 2012 to 2014, during the PhD course at the Electric Drives Laboratory of the University of Udine and during my six months visiting scholarship at the University of Michigan in Dearborn. The topics studied are related to power conversion and digital control of converters and drives suitable for hybrid/electric traction, generation from renewable energy sources and wireless charging applications. From the theoretical point of view, multilevel and multiphase DC/AC and DC/DC converters are discussed here, focusing on design issues, optimization (especially from the efficiency point-of-view) and advantages. Some novel modulation algorithms for the neutral-point clamped three-level inverter are presented here as well as a new multiphase proposal for a three-level buck converter. In addition, a new active torque damping technique in order to reduce torque oscillations in internal combustion engines is proposed here. Mainly, two practical implementations are considered in this dissertation, i.e. an original two-stage bi-directional converter for mild hybrid traction and a wireless charger for electric vehicles fast charge

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems

    Fault Tolerant DC–DC Converters at Homes and Offices

    Get PDF
    The emergence of direct current (DC) microgrids within the context of residential buildings and offices brings in a whole new paradigm in energy distribution. As a result, a set of technical challenges arise, concerning the adoption of efficient, cost-effective, and reliable DC-compatible power conditioning solutions, suitable to interface DC microgrids and energy consuming elements. This thesis encompasses the development of DC–DC power conversion solutions, featuring improved availability and efficiency, suitable to meet the requirements of a comprehensive set of end-uses commonly found in homes and offices. Based on the energy consumption profiles and requirements of the typical elements found at homes and offices, three distinctive groups are established: light-emitting diode (LED) lighting, electric vehicle (EV) charging, and general appliances. For each group, a careful evaluation of the criteria to fulfil is performed, based on which at least one DC–DC power converter is selected and investigated. Totally, a set of five DC–DC converter topologies are addressed in this work, being specific aspects related to fault diagnosis and/or fault tolerance analysed with particular detail in two of them. Firstly, mathematical models are described for LED devices and EV batteries, for the development of a theoretical analysis of the systems’ operation through computational simulations. Based on a compilation of requirements to account for in each end-use (LED lighting, EV charging, and general appliances), brief design considerations are drawn for each converter topology, regarding their architecture and control strategy. Aiming a detailed understanding of the two DC–DC power conversion systems subjected to thorough evaluation in this work – interleaved boost converter and fault-tolerant single-inductor multiple-output (SIMO) converter – under both normal and abnormal conditions, the operation of the systems is evaluated in the presence of open-circuit (OC) faults. Parameters of interest are monitored and evaluated to understand how the failures impact the operation of the entire system. At this stage, valuable information is obtained for the development of fault diagnosis strategies. Taking profit of the data collected in the analysis, a novel fault diagnostic strategy is presented, targeting interleaved DC–DC boost converters for general appliances. Ease of implementation, fast diagnostic and robustness against false alarms distinguish the proposed approach over the state-of-the-art. Its effectiveness is confirmed through a set of operation scenarios, implemented in both simulation environment and experimental context. Finally, an extensive set of reconfiguration strategies is presented and evaluated, aiming to grant fault tolerance capability to the multiple DC–DC converter topologies under analysis. A hybrid reconfiguration approach is developed for the interleaved boost converter. It is demonstrated that the combination of reconfiguration strategies promotes remarkable improvements on the post-fault operation of the converter. In addition, an alternative SIMO converter architecture, featuring inherent tolerance against OC faults, is presented and described. To exploit the OC fault tolerance capability of the fault-tolerant SIMO converter, a converter topology targeted at residential LED lighting systems, two alternative reconfiguration strategies are presented and evaluated in detail. Results obtained from computational simulations and experimental tests confirm the effectiveness of the approaches. To further improve the fault-tolerant SIMO converter with regards to its robustness against sensor faults, while simplifying its hardware architecture, a sensorless current control strategy is presented. The proposed control strategy is evaluated resorting to computational simulations.O surgimento de micro-redes em corrente contínua (CC) em edifícios residenciais e de escritórios estabelece um novo paradigma no domínio da distribuição de energia. Como consequência disso, surge uma panóplia de desafios técnicos ligados à adopção de soluções de conversão de energia, compatíveis com CC, que demonstrem ser eficientes, rentáveis e fiáveis, capazes de estabelecer a interface entre micro-redes em CC e as cargas alimentadas por esse sistema de energia. Até aos dias de hoje, os conversores CC–CC têm vindo a ser maioritariamente utilizados em aplicações de nicho, que geralmente envolvem níveis de potência reduzidos. Porém, as perspectivas futuras apontam para a adopção, em larga escala, destas tecnologias de conversão de energia, também em equipamentos eléctricos residenciais e de escritórios. Tal como qualquer outra tecnologia de conversão electrónica de potência, os conversores CC–CC podem ver o seu funcionamento afectado por falhas que degradam o seu bom funcionamento, sendo que essas falhas acabam por afectar não apenas os conversores em si, mas também as cargas que alimentam, limitando assim o tempo de vida útil do conjunto conversor + carga. Desta forma, é fulcral localizar a origem da falha, para que possam ser adoptadas acções correctivas, capazes de limitar as consequências nefastas associadas à falha. Para responder a este desafio, esta tese contempla o desenvolvimento de soluções de conversão de energia CC–CC altamente eficientes e fiáveis, capazes de responder a requisitos impostos por um conjunto alargado de equipamentos frequentemente encontrados em habitações e escritórios. Com base nos perfis de consumo de energia eléctrica e nos requisitos impostos pelas cargas tipicamente utilizadas em habitações e escritórios, são estabelecidos três grupos distintos: iluminação através de díodos emissores de luz, carregamento de veículo eléctrico (VE) e aparelhos eléctricos em geral. Para cada grupo, é efectuada uma avaliação cuidadosa dos critérios a respeitar, sendo com base nesses critérios que será escolhida e investigada pelo menos uma topologia de conversor CC–CC. No total, são abordadas cinco topologias de conversores CC–CC distintas, sendo que os aspectos ligados ao diagnóstico de avarias e/ou tolerância a falhas são analisados com particular detalhe em duas dessas topologias. Inicialmente, são estabelecidos modelos matemáticos descritivos do comportamento das principais cargas consideradas no estudo – díodos emissores de luz e baterias de VEs – visando a análise teórica do funcionamento dos sistemas em estudo, suportada por simulações computacionais. Com base numa compilação de requisitos a ter em conta em cada aplicação – iluminação através de díodos emissores de luz, carregamento de veículo eléctrico (VE) e aparelhos eléctricos em geral – são estabelecidas considerações ligadas à escolha de cada topologia de conversor não isolado, no que respeita à sua arquitectura e estratégia de controlo. Visando o conhecimento aprofundado das duas topologias de conversor CC–CC alvo de particular enfoque neste trabalho – conversor entrelaçado elevador e conversor de entrada única e múltiplas saídas, tolerante a falhas – quer em funcionamento normal, quer em funcionamento em modo de falha, é avaliado o funcionamento de ambas as topologias na presença de falhas de circuito aberto nos semicondutores activos. Para o efeito, são monitorizados e analisados parâmetros úteis à percepção da forma como os modos de falha avaliados neste trabalho impactam o funcionamento de todo o sistema. Nesta fase, é obtida informação fundamental ao desenvolvimento de estratégias de diagnóstico de avarias, particularmente indicadas para avarias de circuito aberto nos semicondutores activos dos conversores em estudo. Com base na informação recolhida anteriormente, é apresentada uma nova estratégia de diagnóstico de avarias direccionada a conversores CC–CC elevadores entrelaçados utilizados em aparelhos eléctricos, em geral. Facilidade de implementação, rapidez e robustez contra falsos positivos são algumas das características que distinguem a estratégia proposta em relação ao estado da arte. A sua efectividade é confirmada com recurso a uma multiplicidade de cenários de funcionamento, implementados quer em ambiente de simulação, quer em contexto experimental. Por fim, é apresentada e avaliada uma gama alargada de estratégias de reconfiguração, que visam assegurar a tolerância a falhas das diversas topologias de conversores CC–CC em estudo. É desenvolvida uma estratégia de reconfiguração híbrida, direccionada ao conversor entrelaçado elevador, que combina múltiplas medidas de reconfiguração mais simples num único procedimento. Demonstra-se que a combinação de múltiplas estratégias de reconfiguração introduz melhorias substanciais no funcionamento do conversor ao longo do período pós-falha, ao mesmo tempo que assegura a manutenção da qualidade da energia à entrada e saída do conversor reconfigurado. Noutra frente, é apresentada e descrita uma arquitectura alternativa do conversor de entrada única e múltiplas saídas, com tolerância a falhas de circuito aberto. Através da configuração proposta, é possível manter o fornecimento de energia eléctrica a todas as saídas do conversor. Para tirar máximo proveito da tolerância a falhas do conversor de entrada única e múltiplas saídas, uma topologia de conversor indicada para sistemas residenciais de iluminação baseados em díodos emissores de luz, são apresentadas e avaliadas duas estratégias de reconfiguração do conversor, exclusivamente baseadas na adaptação do controlo aplicado ao conversor. Os resultados de simulação computacional e os resultados experimentais obtidos confirmam a efectividade das abordagens adoptadas, através da melhoria da qualidade da energia eléctrica fornecida às diversas saídas do conversor. São assim asseguradas condições essenciais ao funcionamento ininterrupto e estável dos sistemas de iluminação, já que a qualidade da energia eléctrica fornecida aos sistemas de iluminação tem impacto directo na qualidade da luz produzida. Por fim, e para aprimorar o conversor de entrada única e múltiplas saídas tolerante a falhas, no que respeita à sua robustez contra falhas em sensores, é apresentada uma estratégia de controlo de corrente que evita o recurso excessivo a sensores e, ao mesmo tempo, simplifica a estrutura de controlo do conversor. A estratégia apresentada é avaliada através de simulações computacionais. A abordagem apresentada assume vantagens em múltiplos domínios, sendo de destacar vantagens como a melhoria da fiabilidade de todo o sistema de iluminação (conversor + carga), os ganhos atingidos ao nível do rendimento, a redução do custo de implementação da solução, ou a simplificação da estrutura de controlo.This work was supported by the Portuguese Foundation for Science and Technology (FCT) under grant number SFRH/BD/131002/2017, co-funded by the Ministry of Science, Technology and Higher Education (MCTES), by the European Social Fund (FSE) through the ‘Programa Operacional Regional Centro’ (POR-Centro), and by the Human Capital Operational Programme (POCH)
    corecore