2,284 research outputs found

    A Fluid Limit for an Overloaded X Model Via a Stochastic Averaging Principle

    Full text link
    We prove a many-server heavy-traffic fluid limit for an overloaded Markovian queueing system having two customer classes and two service pools, known in the call-center literature as the X model. The system uses the fixed-queue-ratio-with-thresholds (FQR-T) control, which we proposed in a recent paper as a way for one service system to help another in face of an unexpected overload. Under FQR-T, customers are served by their own service pool until a threshold is exceeded. Then, one-way sharing is activated with customers from one class allowed to be served in both pools. After the control is activated, it aims to keep the two queues at a pre-specified fixed ratio. For large systems that fixed ratio is achieved approximately. For the fluid limit, or FWLLN, we consider a sequence of properly scaled X models in overload operating under FQR-T. Our proof of the FWLLN follows the compactness approach, i.e., we show that the sequence of scaled processes is tight, and then show that all converging subsequences have the specified limit. The characterization step is complicated because the queue-difference processes, which determine the customer-server assignments, remain stochastically bounded, and need to be considered without spatial scaling. Asymptotically, these queue-difference processes operate in a faster time scale than the fluid-scaled processes. In the limit, due to a separation of time scales, the driving processes converge to a time-dependent steady state (or local average) of a time-varying fast-time-scale process (FTSP). This averaging principle (AP) allows us to replace the driving processes with the long-run average behavior of the FTSP.Comment: There are 55 pages, 46 references and 0 figure

    A Switching Fluid Limit of a Stochastic Network Under a State-Space-Collapse Inducing Control with Chattering

    Full text link
    Routing mechanisms for stochastic networks are often designed to produce state space collapse (SSC) in a heavy-traffic limit, i.e., to confine the limiting process to a lower-dimensional subset of its full state space. In a fluid limit, a control producing asymptotic SSC corresponds to an ideal sliding mode control that forces the fluid trajectories to a lower-dimensional sliding manifold. Within deterministic dynamical systems theory, it is well known that sliding-mode controls can cause the system to chatter back and forth along the sliding manifold due to delays in activation of the control. For the prelimit stochastic system, chattering implies fluid-scaled fluctuations that are larger than typical stochastic fluctuations. In this paper we show that chattering can occur in the fluid limit of a controlled stochastic network when inappropriate control parameters are used. The model has two large service pools operating under the fixed-queue-ratio with activation and release thresholds (FQR-ART) overload control which we proposed in a recent paper. We now show that, if the control parameters are not chosen properly, then delays in activating and releasing the control can cause chattering with large oscillations in the fluid limit. In turn, these fluid-scaled fluctuations lead to severe congestion, even when the arrival rates are smaller than the potential total service rate in the system, a phenomenon referred to as congestion collapse. We show that the fluid limit can be a bi-stable switching system possessing a unique nontrivial periodic equilibrium, in addition to a unique stationary point

    Analysis of Large Unreliable Stochastic Networks

    Full text link
    In this paper a stochastic model of a large distributed system where users' files are duplicated on unreliable data servers is investigated. Due to a server breakdown, a copy of a file can be lost, it can be retrieved if another copy of the same file is stored on other servers. In the case where no other copy of a given file is present in the network, it is definitively lost. In order to have multiple copies of a given file, it is assumed that each server can devote a fraction of its processing capacity to duplicate files on other servers to enhance the durability of the system. A simplified stochastic model of this network is analyzed. It is assumed that a copy of a given file is lost at some fixed rate and that the initial state is optimal: each file has the maximum number dd of copies located on the servers of the network. Due to random losses, the state of the network is transient and all files will be eventually lost. As a consequence, a transient dd-dimensional Markov process (X(t))(X(t)) with a unique absorbing state describes the evolution this network. By taking a scaling parameter NN related to the number of nodes of the network. a scaling analysis of this process is developed. The asymptotic behavior of (X(t))(X(t)) is analyzed on time scales of the type t↦Nptt\mapsto N^p t for 0≤p≤d−10\leq p\leq d{-}1. The paper derives asymptotic results on the decay of the network: Under a stability assumption, the main results state that the critical time scale for the decay of the system is given by t↦Nd−1tt\mapsto N^{d-1}t. When the stability condition is not satisfied, it is shown that the state of the network converges to an interesting local equilibrium which is investigated. As a consequence it sheds some light on the role of the key parameters λ\lambda, the duplication rate and dd, the maximal number of copies, in the design of these systems

    Random Fluid Limit of an Overloaded Polling Model

    Get PDF
    In the present paper, we study the evolution of an overloaded cyclic polling model that starts empty. Exploiting a connection with multitype branching processes, we derive fluid asymptotics for the joint queue length process. Under passage to the fluid dynamics, the server switches between the queues infinitely many times in any finite time interval causing frequent oscillatory behavior of the fluid limit in the neighborhood of zero. Moreover, the fluid limit is random. Additionally, we suggest a method that establishes finiteness of moments of the busy period in an M/G/1 queue.Comment: 36 pages, 2 picture

    Stochastic Systems ACHIEVING RAPID RECOVERY IN AN OVERLOAD CONTROL FOR LARGE-SCALE SERVICE SYSTEMS

    Get PDF
    We consider an automatic overload control for two large service systems modeled as multi-server queues, such as call centers. We assume that the two systems are designed to operate independently, but want to help each other respond to unexpected overloads. The proposed overload control automatically activates sharing (sending some customers from one system to the other) once a ratio of the queue lengths in the two systems crosses an activation threshold (with ratio and activation threshold parameters for each direction). To prevent harmful sharing, sharing is allowed in only one direction at any time. In this paper, we are primarily concerned with ensuring that the system recovers rapidly after the overload is over, either (i) because the two systems return to normal loading or (ii) because the direction of the overload suddenly shifts in the opposite direction. To achieve rapid recovery, we introduce lower thresholds for the queue ratios, below which one-way sharing is released. As a basis for studyin

    Moment Closure - A Brief Review

    Full text link
    Moment closure methods appear in myriad scientific disciplines in the modelling of complex systems. The goal is to achieve a closed form of a large, usually even infinite, set of coupled differential (or difference) equations. Each equation describes the evolution of one "moment", a suitable coarse-grained quantity computable from the full state space. If the system is too large for analytical and/or numerical methods, then one aims to reduce it by finding a moment closure relation expressing "higher-order moments" in terms of "lower-order moments". In this brief review, we focus on highlighting how moment closure methods occur in different contexts. We also conjecture via a geometric explanation why it has been difficult to rigorously justify many moment closure approximations although they work very well in practice.Comment: short survey paper (max 20 pages) for a broad audience in mathematics, physics, chemistry and quantitative biolog
    • …
    corecore