10,170 research outputs found

    Entropy Production in Random Billiards

    Full text link
    We introduce a class of random mechanical systems called random billiards to study the problem of quantifying the irreversibility of nonequilibrium macroscopic systems. In a random billiard model, a point particle evolves by free motion through the interior of a spatial domain, and reflects according to a reflection operator, specified in the model by a Markov transition kernel, upon collision with the boundary of the domain. We derive a formula for entropy production rate that applies to a general class of random billiard systems. This formula establishes a relation between the purely mathematical concept of entropy production rate and textbook thermodynamic entropy, recovering in particular Clausius' formulation of the second law of thermodynamics. We also study an explicit class of examples whose reflection operator, referred to as the Maxwell-Smolukowski thermostat, models systems with boundary thermostats kept at possibly different temperatures. We prove that, under certain mild regularity conditions, the class of models are uniformly ergodic Markov chains and derive formulas for the stationary distribution and entropy production rate in terms of geometric and thermodynamic parameters.Comment: 30 pages, 9 figure

    Large deviations of the empirical flow for continuous time Markov chains

    Full text link
    We consider a continuous time Markov chain on a countable state space and prove a joint large deviation principle for the empirical measure and the empirical flow, which accounts for the total number of jumps between pairs of states. We give a direct proof using tilting and an indirect one by contraction from the empirical process.Comment: Minor revision, to appear on Annales de l'Institut Henri Poincare (B) Probability and Statistic

    Network as a computer: ranking paths to find flows

    Full text link
    We explore a simple mathematical model of network computation, based on Markov chains. Similar models apply to a broad range of computational phenomena, arising in networks of computers, as well as in genetic, and neural nets, in social networks, and so on. The main problem of interaction with such spontaneously evolving computational systems is that the data are not uniformly structured. An interesting approach is to try to extract the semantical content of the data from their distribution among the nodes. A concept is then identified by finding the community of nodes that share it. The task of data structuring is thus reduced to the task of finding the network communities, as groups of nodes that together perform some non-local data processing. Towards this goal, we extend the ranking methods from nodes to paths. This allows us to extract some information about the likely flow biases from the available static information about the network.Comment: 12 pages, CSR 200
    • …
    corecore