71 research outputs found

    A novel actuator-internal micro/nano positioning stage with an arch-shape bridge type amplifier

    Get PDF
    This paper presents a novel actuator-internal two degree-of-freedom (2-DOF) micro/nano positioning stage actuated by piezoelectric (PZT) actuators, which can be used as a fine actuation part in dual-stage system. To compensate the positioning error of coarse stage and achieve a large motion stroke, a symmetrical structure with an arch-shape bridge type amplifier based on single notch circular flexure hinges is proposed and utilized in the positioning stage. Due to the compound bridge arm configuration and compact flexure hinge structure, the amplification mechanism can realize high lateral stiffness and compact structure simultaneously, which is of great importance to protect PZT actuators. The amplification mechanism is integrated into the decoupling mechanism to improve compactness, and to produce decoupled motion in X- and Y- axes. An analytical model is established to explore the static and dynamic characteristics, and the geometric parameters are optimized. The performance of the positioning stage is evaluated through finite element analysis (FEA) and experimental test. The results indicate that the stage can implement 2-DOF decoupled motion with a travel range of 55.4×53.2 μm2, and the motion resolution is 8 nm. The stage can be used in probe tip-based micro/nano scratching

    DEVELOPMENT OF A NOVEL Z-AXIS PRECISION POSITIONING STAGE WITH MILLIMETER TRAVEL RANGE BASED ON A LINEAR PIEZOELECTRIC MOTOR

    Get PDF
    Piezoelectric-based positioners are incorporated into stereotaxic devices for microsurgery, scanning tunneling microscopes for the manipulation of atomic and molecular-scale structures, nanomanipulator systems for cell microinjection and machine tools for semiconductor-based manufacturing. Although several precision positioning systems have been developed for planar motion, most are not suitable to provide long travel range with large load capacity in vertical axis because of their weights, size, design and embedded actuators. This thesis develops a novel positioner which is being developed specifically for vertical axis motion based on a piezoworm arrangement in flexure frames. An improved estimation of the stiffness for Normally Clamped (NC) clamp is presented. Analytical calculations and finite element analysis are used to optimize the design of the lifting platform as well as the piezoworm actuator to provide maximum thrust force while maintaining a compact size. To make a stage frame more compact, the actuator is integrated into the stage body. The complementary clamps and the amplified piezoelectric actuators based extenders are designed such that no power is needed to maintain a fixed vertical position, holding the payload against the force of gravity. The design is extended to a piezoworm stage prototype and validated through several tests. Experiments on the prototype stage show that it is capable of a speed of 5.4 mm/s, a force capacity of 8 N and can travel over 16 mm

    A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism

    Get PDF
    This paper presents a 2-degrees of freedom flexure-based micropositioning stage with a flexible decoupling mechanism. The stage is composed of an upper planar stage and four vertical support links to improve the out-of-plane stiffness. The moving platform is driven by two voice coil motors, and thus it has the capability of large working stroke. The upper stage is connected with the base through six double parallel four-bar linkages mechanisms, which are orthogonally arranged to implement the motion decoupling in the x and y directions. The vertical support links with serially connected hook joints are utilized to guarantee good planar motion with heavy-loads. The static stiffness and the dynamic resonant frequencies are obtained based on the theoretical analyses. Finite element analysis is used to investigate the characteristics of the developed stage. Experiments are carried out to validate the established models and the performance of the developed stage. It is noted that the developed stage has the capability of translational motion stroke of 1.8 mm and 1.78 mm in working axes. The maximum coupling errors in the x and y directions are 0.65% and 0.82%, respectively, and the motion resolution is less than 200 nm. The experimental results show that the developed stage has good capability for trajectory tracking

    Design, Development and Implementation of the Position Estimator Algorithm for Harmonic Motion on the XY Flexural Mechanism for High Precision Positioning

    Get PDF
    This article presents a novel concept of the position estimator algorithm for voice coil actuators used in precision scanning applications. Here, a voice coil motor was used as an actuator and a sensor using the position estimator algorithm, which was derived from an electro-mechanical model of a voice coil motor. According to the proposed algorithm, the position of coil relative to the fixed magnet position depends on the current drawn, voltage across coil and motor constant of the voice coil motor. This eliminates the use of a sensor that is an integral part of all feedback control systems. Proposed position estimator was experimentally validated for the voice coil actuator in integration with electro-mechanical modeling of the flexural mechanism. The experimental setup consisted of the flexural mechanism, voice coil actuator, current and voltage monitoring circuitry and its interfacing with PC via a dSPACE DS1104 R&D microcontroller board. Theoretical and experimental results revealed successful implementation of the proposed novel algorithm in the feedback control system with positioning resolution of less than ±5 microns at the scanning speed of more than 5 mm/s. Further, proportional-integral-derivative (PID) control strategy was implemented along with developed algorithm to minimize the error. The position determined by the position estimator algorithm has an accuracy of 99.4% for single direction motion with the experimentally observed position at those instantaneous states

    Development of a piezo-driven 3-DOF stage with T-shape flexible hinge mechanism

    Get PDF
    This paper presents a 3-DOF (Degree of freedom) stage with T-shape flexible hinge mechanism for the applications in the precision measurement equipments and micro/nano manipulation systems. The stage is driven by three piezoelectric actuators (PEAs) and guided by a flexible hinge based mechanism with three symmetric T-shape hinges. The proposed T-shape flexible hinge mechanism can provide excellent planar motion capability with high stability, and thus guarantee the outstanding dynamics characteristics. The theoretical modeling of the stage was carried out and the stiffness and the dynamic resonance frequency have been obtained. The kinematic model of the 3-DOF stage was established and the workspace has been analyzed. The characteristics of the stage were investigated using finite element analysis (FEA). Experiments were conducted to examine the performance of the stage, through this stage, X-axis translational motion stroke of 6.9 µm, Y-axis translational motion stroke of 8.5 µm and rotational motion stroke along Z-axis of 289 µrad can be achieved. A hybrid feedforward/feedback control methodology has been proposed to eliminate the nonlinear hysteresis, the trajectory tracking performances and to reduce external disturbance of the 3-DOF stage

    Micro motion amplification – A Review

    Get PDF
    Many motion-active materials have recently emerged, with new methods of integration into actuator components and systems-on-chip. Along with established microprocessors, interconnectivity capabilities and emerging powering methods, they offer a unique opportunity for the development of interactive millimeter and micrometer scale systems with combined sensing and actuating capabilities. The amplification of nanoscale material motion to a functional range is a key requirement for motion interaction and practical applications, including medical micro-robotics, micro-vehicles and micro-motion energy harvesting. Motion amplification concepts include various types of leverage, flextensional mechanisms, unimorphs, micro-walking /micro-motor systems, and structural resonance. A review of the research state-of-art and product availability shows that the available mechanisms offer a motion gain in the range of 10. The limiting factor is the aspect ratio of the moving structure that is achievable in the microscale. Flexures offer high gains because they allow the application of input displacement in the close vicinity of an effective pivotal point. They also involve simple and monolithic fabrication methods allowing combination of multiple amplification stages. Currently, commercially available motion amplifiers can provide strokes as high as 2% of their size. The combination of high-force piezoelectric stacks or unimorph beams with compliant structure optimization methods is expected to make available a new class of high-performance motion translators for microsystems

    Dynamics and Control of Flexure-based Large Range Nanopositioning Systems.

    Full text link
    The objective of this thesis is to demonstrate desktop-size and cost-effective flexure-based multi-axis nanopositioning capability over a motion range of several millimeters per axis. Increasing the motion range will overcome one of the main drawbacks of existing nanopositioning systems, thereby significantly improving the coverage area in nanometrology and nanomanufacturing applications. A single-axis nanopositioning system, comprising a symmetric double parallelogram flexure bearing and a traditional-architecture moving magnet actuator, is designed, fabricated, and tested. A figure of merit for the actuator is derived and shown to directly impact the system-level trade-offs in terms of range, resolution, bandwidth, and temperature rise. While linear feedback controllers provide good positioning performance for point-to-point commands, the tracking error for dynamic commands prove to be inadequate due to the nonlinearities in the actuator and its driver. To overcome this, an iterative learning controller is implemented in conjunction with linear feedback to reduce the periodic component of the tracking error by more than two orders of magnitude. Experimental results demonstrate 10 nm RMS tracking error over 8 mm motion range in response to a 2 Hz bandlimited triangular command. For the XY nanopositioning system, a lumped-parameter model of an existing XY flexure bearing is developed in order to understand the unexplained variation observed in the transfer function zeros over the operating range of motion. It is shown that the kinematic coupling, due to geometric nonlinearities in the beam mechanics, and small dimensional asymmetry, due to manufacturing tolerances, may conspire to produce complex-conjugate nonminimum phase zeros at certain operating points in the system's workspace. This phenomenon significantly restricts the overall performance of the feedback control system. After intentional use of large asymmetry is employed to overcome this problem, independent feedback and iterative learning controllers are implemented along each axis. Experimental results demonstrate 20 nm RMS radial tracking error while traversing a 2 mm diameter circle at 2 Hz.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107086/1/parmar_1.pd

    Dynamics and Controls of Fluidic Pressure-Fed Mechanism (FPFM) of Nanopositioning System

    Get PDF
    Flexure or compliant mechanisms are employed in many precisions engineered devices due to their compactness, linearity, resolution, etc. Yet, critical issues remain in motion errors, thermal instability, limited bandwidth, and vibration of dynamic systems. Those issues cannot be negligible to maintain high precision and accuracy for precision engineering applications. In this thesis, a novel fluidic pressure-fed mechanism (FPFM) is proposed and investigated. The proposed method is designing internal fluidic channels inside the spring structure of the flexure mechanism using the additive manufacturing (AM) process to overcome addressed challenges. By applying pneumatic/hydraulic pressure and filling media into fluidic channels, dynamic characteristics of each spring structure of the flexure mechanism can be altered or adjusted to correct motion errors, increase operating speed, and suppress vibration. Additionally, FPFM can enhance thermal stability by flowing fluids without affecting the motion quality of the dynamic system. Lastly, the motion of the nanopositioning system driven by FPFM can provide sub-nanometer resolution motion, and this enables the nanopositioning system to have two linear motion in a monolithic structure. The main objective of this thesis is to propose and validate the feasibility of FPFM that can ultimately be used for a monolithic FPFM dual-mode stage for providing high positioning performance without motion errors while reducing vibration and increasing thermal stability and bandwidth

    Modeling and tracking control of a novel XYθz stage

    Get PDF
    A XYθz stage is designed and experimentally tested. This developed stage is driven by three piezoelectric actuators (PZTs) and guided by a flexure hinge based mechanism with three symmetric T-shape hinges. It was manufactured monolithically by using wire electrical discharge machining technology. In addition, considering the both electrical and mechanical characteristics, a third-order dynamic model of the 3-DOF system has been established to investigate the relationship between the input voltage and the output displacement of the entire system. The parameters of the third-order dynamic model were estimated by using the system identification toolbox. Furthermore, decoupling control is also proposed to solve the existed coupling motion of the stage. In order to compensate the hysteresis of PZT, the inverse Bouc-Wen model was utilized as a feedforward hysteresis compensator. Finally, extensive experiments were performed to verify the good decoupling and tracking performances of the developed stage

    Micro motion stages with flexure hinges-design and control

    Get PDF
    The developments in micro and nano technologies brought the need of high precision micropositioning stages to be used in micro/nano applications such as cell manipulation, surgery, aerospace, micro fluidics, optical systems, micromachining and microassembly etc. Micro motion stages with flexible joints called compliant mechanisms are built to provide the needed accuracy and precision. This thesis aims to build compliant planar micro motion stages using flexure hinges to be used as micropositioning devices in x-y directions by applying new control methods. First 3- RRR planar parallel kinematic structure is selected which is also popular in the literature. Then the mechanism is developed to have a new structure which is a 3-PRR mechanism. The necessary geometric parameters are selected by using Finite Element Analysis (FEA). The displacement, stress and frequency behaviors of the mechanisms are compared and discussed. Modeling of the flexure based mechanisms is also studied for 3-PRR compliant stage by using Kinetostatic modeling method which combines the compliance calculations of flexure hinges with kinematics of the mechanism. Piezoelectric actuators and optical 2d position sensor which uses a laser source are used for actuation and measurement of the stages. After the experimental studies it's seen that the results are not compatible with FEA because of the unpredictable errors caused by manufacturing and assembly. We have succeeded to eliminate those errors by implementing a control methodology based on Sliding Mode Control with Disturbance Observer which is also based on Sliding Mode Control using linear piezoelectric actuator models. Finally, we have extracted experimental models for each actuation direction of the stage and used those models instead of piezoelectric actuator models which lowered our errors in the accuracy of our measurement and ready to be used as a high precision micro positioning stage for our micro system applications
    • …
    corecore