1,126 research outputs found

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    AngeLA: Putting the Teacher in Control of Student Privacy in the Online Classroom

    Get PDF
    Learning analytics (LA) is often considered as a means to improve learning and learning environments by measuring student behaviour, analysing the tracked data and acting upon the results. The use of LA tools implies recording and processing of student activities conducted on software platforms. This paper proposes a flexible, contextual and intuitive way to provide the teacher with full control over student activity tracking in online learning environments. We call this approach AngeLA, inspired by an angel guarding over LA privacy. AngeLA mimics in a virtual space the privacy control mechanism that works well in a physical room: if a person is present in a room, she is able to observe all activities happening in the room. AngeLA serves two main purposes: (1) it increases the awareness of teachers about the activity tracking and (2) provides an intuitive way to manage the activity tracking permissions. This approach can be applied to various learning environments and social media platforms. We have implemented AngeLA in Graasp, a social platform that fosters collaborative activities

    Describing and Processing Topology and Quality of Service Parameters of Applications in the Cloud

    Get PDF
    Typical cloud applications require high-level policy driven orchestration to achieve efficient resource utilisation and robust security to support different types of users and user scenarios. However, the efficient and secure utilisation of cloud resources to run applications is not trivial. Although there have been several efforts to support the coordinated deployment, and to a smaller extent the run-time orchestration of applications in the Cloud, no comprehensive solution has emerged until now that successfully leverages applications in an efficient, secure and seamless way. One of the major challenges is how to specify and manage Quality of Service (QoS) properties governing cloud applications. The solution to address these challenges could be a generic and pluggable framework that supports the optimal and secure deployment and run-time orchestration of applications in the Cloud. A specific aspect of such a cloud orchestration framework is the need to describe complex applications incorporating several services. These application descriptions must specify both the structure of the application and its QoS parameters, such as desired performance, economic viability and security. This paper proposes a cloud technology agnostic approach to application descriptions based on existing standards and describes how these application descriptions can be processed to manage applications in the Cloud

    Middleware platform for distributed applications incorporating robots, sensors and the cloud

    Get PDF
    Cyber-physical systems in the factory of the future will consist of cloud-hosted software governing an agile production process executed by autonomous mobile robots and controlled by analyzing the data from a vast number of sensors. CPSs thus operate on a distributed production floor infrastructure and the set-up continuously changes with each new manufacturing task. In this paper, we present our OSGibased middleware that abstracts the deployment of servicebased CPS software components on the underlying distributed platform comprising robots, actuators, sensors and the cloud. Moreover, our middleware provides specific support to develop components based on artificial neural networks, a technique that recently became very popular for sensor data analytics and robot actuation. We demonstrate a system where a robot takes actions based on the input from sensors in its vicinity

    Resource Management and Scheduling for Big Data Applications in Cloud Computing Environments

    Get PDF
    This chapter presents software architectures of the big data processing platforms. It will provide an in-depth knowledge on resource management techniques involved while deploying big data processing systems on cloud environment. It starts from the very basics and gradually introduce the core components of resource management which we have divided in multiple layers. It covers the state-of-art practices and researches done in SLA-based resource management with a specific focus on the job scheduling mechanisms.Comment: 27 pages, 9 figure
    • …
    corecore