936 research outputs found

    SatCat5: A Low-Power, Mixed-Media Ethernet Network for Smallsats

    Get PDF
    In any satellite, internal bus and payload systems must exchange a variety of command, control, telemetry, and mission-data. In too many cases, the resulting network is an ad-hoc proliferation of complex, dissimilar protocols with incomplete system-to-system connectivity. While standards like CAN, MIL-STD-1553, and SpaceWire mitigate this problem, none can simultaneously solve the need for high throughput and low power consumption. We present a new solution that uses Ethernet framing and addressing to unify a mixed-media network. Low-speed nodes (0.1-10 Mbps) use simple interfaces such as SPI and UART to communicate with extremely low power and minimal complexity. High-speed nodes use so-called “media-independent” interfaces such as RMII, RGMII, and SGMII to communicate at rates up to 1000 Mbps and enable connection to traditional COTS network equipment. All are interconnected into a single smallsat-area-network using a Layer-2 network switch, with mixed-media support for all these interfaces on a single network. The result is fast, easy, and flexible communication between any two subsystems. SatCat5 is presented as a free and open-source reference implementation of this mixed-media network switch, with power consumption of 0.2-0.7W depending on network activity. Further discussion includes example protocols that can be used on such networks, leveraging IPv4 when suitable but also enabling full-featured communication without the need for a complex protocol stack

    A High Speed Networked Signal Processing Platform for Multi-element Radio Telescopes

    Get PDF
    A new architecture is presented for a Networked Signal Processing System (NSPS) suitable for handling the real-time signal processing of multi-element radio telescopes. In this system, a multi-element radio telescope is viewed as an application of a multi-sensor, data fusion problem which can be decomposed into a general set of computing and network components for which a practical and scalable architecture is enabled by current technology. The need for such a system arose in the context of an ongoing program for reconfiguring the Ooty Radio Telescope (ORT) as a programmable 264-element array, which will enable several new observing capabilities for large scale surveys on this mature telescope. For this application, it is necessary to manage, route and combine large volumes of data whose real-time collation requires large I/O bandwidths to be sustained. Since these are general requirements of many multi-sensor fusion applications, we first describe the basic architecture of the NSPS in terms of a Fusion Tree before elaborating on its application for the ORT. The paper addresses issues relating to high speed distributed data acquisition, Field Programmable Gate Array (FPGA) based peer-to-peer networks supporting significant on-the fly processing while routing, and providing a last mile interface to a typical commodity network like Gigabit Ethernet. The system is fundamentally a pair of two co-operative networks, among which one is part of a commodity high performance computer cluster and the other is based on Commercial-Off The-Shelf (COTS) technology with support from software/firmware components in the public domain.Comment: 19 pages, 4 eps figures, To be published in Experimental Astronomy (Springer

    Network on chip architecture for multi-agent systems in FPGA

    Get PDF
    A system of interacting agents is, by definition, very demanding in terms of computational resources. Although multi-agent systems have been used to solve complex problems in many areas, it is usually very difficult to perform large-scale simulations in their targeted serial computing platforms. Reconfigurable hardware, in particular Field Programmable Gate Arrays (FPGA) devices, have been successfully used in High Performance Computing applications due to their inherent flexibility, data parallelism and algorithm acceleration capabilities. Indeed, reconfigurable hardware seems to be the next logical step in the agency paradigm, but only a few attempts have been successful in implementing multi-agent systems in these platforms. This paper discusses the problem of inter-agent communications in Field Programmable Gate Arrays. It proposes a Network-on-Chip in a hierarchical star topology to enable agents’ transactions through message broadcasting using the Open Core Protocol, as an interface between hardware modules. A customizable router microarchitecture is described and a multi-agent system is created to simulate and analyse message exchanges in a generic heavy traffic load agent-based application. Experiments have shown a throughput of 1.6Gbps per port at 100 MHz without packet loss and seamless scalability characteristics

    Networked control system with MANET communication and AODV routing

    Get PDF
    The industries are presently exploring the use of wired and wireless systems for control, automation, and monitoring. The primary benefit of wireless technology is that it reduces the installation cost, in both money and labor terms, as companies already have a significant investment in wiring. The research article presents the work on the analysis of Mobile Ad Hoc Network (MANET) in a wireless real-time communication medium for a Networked Control System (NCS), and determining whether the simulated behavior is significant for a plant or not. The behavior of the MANET is analyzed for Ad-hoc on-demand distance vector routing (AODV) that maintenances communication among 150 nodes for NCS. The simulation is carried out in Network Simulator (NS2) software with different nodes cluster to estimate the network throughput, end-to-end delay, packet delivery ratio (PDR), and control overhead. The benefit of MANET is that it has a fixed topology, which permits flexibility since mobile devices may be used to construct ad-hoc networks anywhere, scalability because more nodes can be added to the network, and minimal operating expenses in that no original infrastructure needs to be developed. AODV routing is a flat routing system that does not require central routing nodes. As the network grows in size, the network can be scaled to meet the network design and configuration requirements. AODV is flexible to support different configurations and topological nodes in dynamic networks because of its versatility. The advantage of such network simulation and routing behavior provides the future direction for the researchers who are working towards the embedded hardware solutions for NCS, as the hardware complexity depends on the delay, throughput, and PDR

    All-Optical Programmable Disaggregated Data Centre Network realized by FPGA-based Switch and Interface Card

    Get PDF
    This paper reports an FPGA-based switch and interface card (SIC) and its application scenario in an all-optical, programmable disaggregated data center network (DCN). Our novel SIC is designed and implemented to replace traditional optical network interface cards, plugged into the server directly, supporting optical packet switching (OPS)/optical circuit switching (OCS) or time division multiplexing (TDM)/wavelength division multiplexing (WDM) traffic on demand. Placing the SIC in each server/blade, we eliminate electronics from the top of rack (ToR) switch by pushing all the functionality on each blade while enabling direct intrarack blade-to-blade communication to deliver ultralow chip-to-chip latency. We demonstrate the disaggregated DCN architecture scenarios along with all-optical dimension-programmable N × M spectrum selective Switches (SSS) and an architecture-on-demand (AoD) optical backplane. OPS and OCS complement each other as do TDM and WDM, which can support variable traffic flows. A flat disaggregated DCN architecture is realized by connecting the optical ToR switches directly to either an optical top of cluster switch or the intracluster AoD optical backplane, while clusters are further interconnected to an intercluster AoD for scaling out

    Various Applications of Methods and Elements of Adaptive Optics

    Get PDF
    This volume is focused on a wide range of topics, including adaptive optic components and tools, wavefront sensing, different control algorithms, astronomy, and propagation through turbulent and turbid media

    Advanced techniques for diagnostics and control applied to particle accelerators

    Get PDF
    201 p.Esta tesis versa en torno a tecnologías y técnicas novedosas orientadas al diagnóstico y control para aceleradores de partículas. Se centra principalmente en el desarrollo de dos aplicaciones para dicho propósito; un monitor de posición de haz (beam position monitor o BPM en inglés) por un lado, y un control de RF denominado sistema de RF de bajo nivel (low-level RF o LLRF en inglés) por el otro. Además, se han desarrollado completos bancos de pruebas, permitiendo de esta manera el testeo de las mencionadas soluciones en el laboratorio. El estudio de técnicas de muestreo y procesamiento digital para su posterior implementación también juega un papel importante en este trabajo.De esta manera, las principales contribuciones de esta tesis son el desarrollo de un BPM y un sistema de control LLRF altamente flexibles y reconfigurables, estando ambos basados en hardware digital. Las soluciones presentadas han sido diseñadas con el objetivo de crear herramientas especialmente adecuadas para labores de investigación en laboratorio. Las aplicaciones obtenidas cumplen este objetivo, mostrando características especialmente valiosas como una rápida etapa de prototipado y alta modularidad.Otra línea de la presente tesis está dirigida al estudio de técnicas avanzadas de muestreo y procesamiento digital de señal, las cuales son posteriormente implementadas en las citadas aplicaciones. Finalmente, la última parte de este trabajo trata sobre la integración de la información producida por estas herramientas de diagnóstico y control en EPICS, un sistema de control ampliamente utilizado en el campo de los aceleradores de partículas

    Advanced photonic and electronic systems - WILGA 2017

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers more than 350 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET by PAN and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2017 was the XL edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2017 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing
    corecore