91 research outputs found

    Steered Mixture-of-Experts' for image and light field representation, processing and coding : a universal approach for immersive experiences of camera-captured scenes

    Get PDF

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. In the proposed CODEC I, block-based disparity estimation/compensation (DE/DC) is performed in pixel domain. However, this results in an inefficiency when DWT is applied on the whole predictive error image that results from the DE process. This is because of the existence of artificial block boundaries between error blocks in the predictive error image. To overcome this problem, in the remaining proposed CODECs, DE/DC is performed in the wavelet domain. Due to the multiresolution nature of the wavelet domain, two methods of disparity estimation and compensation have been proposed. The first method is performing DEJDC in each subband of the lowest/coarsest resolution level and then propagating the disparity vectors obtained to the corresponding subbands of higher/finer resolution. Note that DE is not performed in every subband due to the high overhead bits that could be required for the coding of disparity vectors of all subbands. This method is being used in CODEC II. In the second method, DEJDC is performed m the wavelet-block domain. This enables disparity estimation to be performed m all subbands simultaneously without increasing the overhead bits required for the coding disparity vectors. This method is used by CODEC III. However, performing disparity estimation/compensation in all subbands would result in a significant improvement of CODEC III. To further improve the performance of CODEC ill, pioneering wavelet-block search technique is implemented in CODEC IV. The pioneering wavelet-block search technique enables the right/predicted image to be reconstructed at the decoder end without the need of transmitting the disparity vectors. In proposed CODEC V, pioneering block search is performed in all subbands of DWT decomposition which results in an improvement of its performance. Further, the CODEC IV and V are able to perform at very low bit rates(< 0.15 bpp). In CODEC VI and CODEC VII, Overlapped Block Disparity Compensation (OBDC) is used with & without the need of coding disparity vector. Our experiment results showed that no significant coding gains could be obtained for these CODECs over CODEC IV & V. All proposed CODECs m this thesis are wavelet-based stereo image coding algorithms that maximise the flexibility and benefits offered by wavelet transform technology when applied to stereo imaging. In addition the use of a baseline-JPEG coding architecture would enable the easy adaptation of the proposed algorithms within systems originally built for DCT-based coding. This is an important feature that would be useful during an era where DCT-based technology is only slowly being phased out to give way for DWT based compression technology. In addition, this thesis proposed a stereo image coding algorithm that uses JPEG-2000 technology as the basic compression engine. The proposed CODEC, named RASTER is a rate scalable stereo image CODEC that has a unique ability to preserve the image quality at binocular depth boundaries, which is an important requirement in the design of stereo image CODEC. The experimental results have shown that the proposed CODEC is able to achieve PSNR gains of up to 3.7 dB as compared to directly transmitting the right frame using JPEG-2000

    From OPIMA to MPEG IPMP-X: A standard's history across R&amp;D projects

    Get PDF
    This paper describes the work performed by a number of companies and universities who have been working as a consortium under the umbrella of the European Union Framework Programme 5 (FP5), Information Society Technologies (IST) research program, in order to provide a set of Digital Rights Management (DRM) technologies and architectures, aiming at helping to reduce the copyright circumvention risks, that have been threatening the music and film industries in their transition from the “analogue” to “digital” age. The paper starts by addressing some of the earlier standardization efforts in the DRM arena, namely, Open Platform Initiative for Multimedia Access (OPIMA). One of the described FP5 IST projects, Open Components for Controlled Access to Multimedia Material (OCCAMM), has developed the OPIMA vision. The paper addresses also the Motion Pictures Expert Group—MPEG DRM work, starting from the MPEG Intellectual Propriety Management and Protection—IPMP “Hooks”, towards the MPEG IPMP Extensions, which has originated the first DRM-related standard (MPEG-4 Part 13, called IPMP Extensions or IPMP-X) ever released by ISO up to the present days.2 The paper clarifies how the FP5 IST project MPEG Open Security for Embedded Systems (MOSES), has extended the OPIMA interfaces and architecture to achieve compliance with the MPEG IPMP-X standard, and how it has contributed to the achievement of “consensus” and to the specification, implementation (Reference Software) and validation (Conformance Testing) of the MPEG IPMP-X standard.info:eu-repo/semantics/acceptedVersio

    So many standards, so little time: A history and analysis of four digital video standards

    Get PDF
    This dissertation focuses on standards for digital video - the social aspects of their design and the sociotechnical forces that drive their development and adoption. This work is a history and analysis of how the MXF, JPEG 2000, FFV1 and Matroska standards have been adopted and/or adapted by libraries and archives of different sizes. Well-funded institutions often have the resources to develop tailor-made specifications for the digitization of their analog video objects. Digital video standards and specifications of this kind are often derived from the needs of the cinema production and television broadcast realms in the United States and may be unsuitable for smaller memory institutions that are resource-poor and/or lack staff with the knowledge to implement these technologies. This research seeks to provide insight into how moving image preservation professionals work with - and sometimes against - broadcast and film production industries in order to produce and/or implement standards governing video formats and encodings. This dissertation describes the transition of four digital video standards from niches to widespread use in libraries and archives. It also examines the effects these standards produce on cultural heritage video preservation by interviewing people who implement the standards as well as people who develop them
    • …
    corecore