87,291 research outputs found

    A Peer-to-Peer Middleware Framework for Resilient Persistent Programming

    Get PDF
    The persistent programming systems of the 1980s offered a programming model that integrated computation and long-term storage. In these systems, reliable applications could be engineered without requiring the programmer to write translation code to manage the transfer of data to and from non-volatile storage. More importantly, it simplified the programmer's conceptual model of an application, and avoided the many coherency problems that result from multiple cached copies of the same information. Although technically innovative, persistent languages were not widely adopted, perhaps due in part to their closed-world model. Each persistent store was located on a single host, and there were no flexible mechanisms for communication or transfer of data between separate stores. Here we re-open the work on persistence and combine it with modern peer-to-peer techniques in order to provide support for orthogonal persistence in resilient and potentially long-running distributed applications. Our vision is of an infrastructure within which an application can be developed and distributed with minimal modification, whereupon the application becomes resilient to certain failure modes. If a node, or the connection to it, fails during execution of the application, the objects are re-instantiated from distributed replicas, without their reference holders being aware of the failure. Furthermore, we believe that this can be achieved within a spectrum of application programmer intervention, ranging from minimal to totally prescriptive, as desired. The same mechanisms encompass an orthogonally persistent programming model. We outline our approach to implementing this vision, and describe current progress.Comment: Submitted to EuroSys 200

    The Role of Structural Reflection in Distributed Virtual Reality

    Get PDF
    The emergence of collaborative virtual world applications that run over the Internet has presented Virtual Reality (VR) application designers with new challenges. In an environment where the public internet streams multimedia data and is constantly under pressure to deliver over widely heterogeneous user-platforms, there has been a growing need that distributed virtual world applications be aware of and adapt to frequent variations in their context of execution. In this paper, we argue that in contrast to research efforts targeted at improvement of scalability, persistence and responsiveness capabilities, much less attempts have been aimed at addressing the flexibility, maintainability and extensibility requirements in contemporary Distributed VR applications. We propose the use of structural reflection as an approach that not only addresses these requirements but also offers added value in the form of providing a framework for scalability, persistence and responsiveness that is itself flexible, maintainable and extensible

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    AliEnFS - a Linux File System for the AliEn Grid Services

    Full text link
    Among the services offered by the AliEn (ALICE Environment http://alien.cern.ch) Grid framework there is a virtual file catalogue to allow transparent access to distributed data-sets using various file transfer protocols. alienfsalienfs (AliEn File System) integrates the AliEn file catalogue as a new file system type into the Linux kernel using LUFS, a hybrid user space file system framework (Open Source http://lufs.sourceforge.net). LUFS uses a special kernel interface level called VFS (Virtual File System Switch) to communicate via a generalised file system interface to the AliEn file system daemon. The AliEn framework is used for authentication, catalogue browsing, file registration and read/write transfer operations. A C++ API implements the generic file system operations. The goal of AliEnFS is to allow users easy interactive access to a worldwide distributed virtual file system using familiar shell commands (f.e. cp,ls,rm ...) The paper discusses general aspects of Grid File Systems, the AliEn implementation and present and future developments for the AliEn Grid File System.Comment: 9 pages, 12 figure

    Fault-Tolerant Adaptive Parallel and Distributed Simulation

    Full text link
    Discrete Event Simulation is a widely used technique that is used to model and analyze complex systems in many fields of science and engineering. The increasingly large size of simulation models poses a serious computational challenge, since the time needed to run a simulation can be prohibitively large. For this reason, Parallel and Distributes Simulation techniques have been proposed to take advantage of multiple execution units which are found in multicore processors, cluster of workstations or HPC systems. The current generation of HPC systems includes hundreds of thousands of computing nodes and a vast amount of ancillary components. Despite improvements in manufacturing processes, failures of some components are frequent, and the situation will get worse as larger systems are built. In this paper we describe FT-GAIA, a software-based fault-tolerant extension of the GAIA/ART\`IS parallel simulation middleware. FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes; furthermore, FT-GAIA offers some protection against byzantine failures since synchronization messages are replicated as well, so that the receiving entity can identify and discard corrupted messages. We provide an experimental evaluation of FT-GAIA on a running prototype. Results show that a high degree of fault tolerance can be achieved, at the cost of a moderate increase in the computational load of the execution units.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2016

    OpenPING: A Reflective Middleware for the Construction of Adaptive Networked Game Applications

    Get PDF
    The emergence of distributed Virtual Reality (VR) applications that run over the Internet has presented networked game application designers with new challenges. In an environment where the public internet streams multimedia data and is constantly under pressure to deliver over widely heterogeneous user-platforms, there has been a growing need that distributed VR applications be aware of and adapt to frequent variations in their context of execution. In this paper, we argue that in contrast to research efforts targeted at improvement of scalability, persistence and responsiveness capabilities, much less attempts have been aimed at addressing the flexibility, maintainability and extensibility requirements in contemporary distributed VR platforms. We propose the use of structural reflection as an approach that not only addresses these requirements but also offers added value in the form of providing a framework for scalability, persistence and responsiveness that is itself flexible, maintainable and extensible. We also present an adaptive middleware platform implementation called OpenPING1 that supports our proposal in addressing these requirements
    • 

    corecore