281,584 research outputs found

    Integration and deployment of a distributed and pluggable industrial architecture for the PERFoRM project

    Get PDF
    To meet flexibility and reconfigurability requirements, modern production systems need hardware and software solutions which ease the connection and mediation of different and heterogonous industrial cyber-physical components. Following the vision of Industry 4.0, the H2020 PERFoRM project targets, particularly, the seamless reconfiguration of robots and machinery. This paper describes the implementation of a highly flexible, pluggable and distributed architecture solution, focusing on several building blocks, particularly a distributed middleware, a common data model and standard interfaces and technological adapters, which can be used for connecting legacy systems (such as databases) with simulation, visualization and reconfiguration tools.This project has received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No 680435info:eu-repo/semantics/publishedVersio

    A Flexible and Secure Deployment Framework for Distributed Applications

    Get PDF
    This paper describes an implemented system which is designed to support the deployment of applications offering distributed services, comprising a number of distributed components. This is achieved by creating high level placement and topology descriptions which drive tools that deploy applications consisting of components running on multiple hosts. The system addresses issues of heterogeneity by providing abstractions over host-specific attributes yielding a homogeneous run-time environment into which components may be deployed. The run-time environments provide secure binding mechanisms that permit deployed components to bind to stored data and services on the hosts on which they are running.Comment: 2nd International Working Conference on Component Deployment (CD 2004), Edinburgh, Scotlan

    Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing interest on biological pathways has called for new statistical methods for modeling and testing a genetic pathway effect on a health outcome. The fact that genes within a pathway tend to interact with each other and relate to the outcome in a complicated way makes nonparametric methods more desirable. The kernel machine method provides a convenient, powerful and unified method for multi-dimensional parametric and nonparametric modeling of the pathway effect.</p> <p>Results</p> <p>In this paper we propose a logistic kernel machine regression model for binary outcomes. This model relates the disease risk to covariates parametrically, and to genes within a genetic pathway parametrically or nonparametrically using kernel machines. The nonparametric genetic pathway effect allows for possible interactions among the genes within the same pathway and a complicated relationship of the genetic pathway and the outcome. We show that kernel machine estimation of the model components can be formulated using a logistic mixed model. Estimation hence can proceed within a mixed model framework using standard statistical software. A score test based on a Gaussian process approximation is developed to test for the genetic pathway effect. The methods are illustrated using a prostate cancer data set and evaluated using simulations. An extension to continuous and discrete outcomes using generalized kernel machine models and its connection with generalized linear mixed models is discussed.</p> <p>Conclusion</p> <p>Logistic kernel machine regression and its extension generalized kernel machine regression provide a novel and flexible statistical tool for modeling pathway effects on discrete and continuous outcomes. Their close connection to mixed models and attractive performance make them have promising wide applications in bioinformatics and other biomedical areas.</p

    Sustainable Waste Sorter

    Get PDF
    Indiana University Purdue University IndianapolisThe purpose of this project is to help people eliminate the confusion on whether they should throw their trash away or dispose of it in a recycling bin. The sustainable waste sorter is an informative device that tells the user where to place their trash. Our customer and the origin of the idea came from an organization called Roche Diagnostics Operations. Roche Diagnostics Operations is a multinational healthcare organization, the Indianapolis location focuses more on creating and developing their diabetic test strips. The device is created of four main components which include a Raspberry Pi 2 Model B, a camera module, an LCD screen, and a casing/mount that holds all of these components together. All of these components are compatible with the Raspberry Pi 2 Model B. The software was programmed in Python and the database in MySQL. During the development of the device, the most challenging task was learning how to develop in the new language, Python. Once the device reached a stable state it was piloted at Roche Diagnostics Operations. The purpose of the first of three pilot sessions was to verify that the device worked in the environment and that the items entered in the database were recognized; as a result, the device passed that test. The second pilot session had the same purpose as the first pilot session but with more items in the database. The device received more interaction during the second pilot session, though the team decided to schedule a third pilot session once all the items were entered into the database and a revamped user interface was completed. The team entered about 800 entries into the database and created a new and interactive user interface for the device. The third pilot session was a success; the items that were scanned by testers were recognized and the new user interface was a success as well. Overall, the sustainable waste sorter project was successful and educational. We, as students, took all of our fundamental learnings from our previous courses and applied them to this project. This allowed us to enhance our problem solving and project management skills. As people use the device, we hope that it educates them on how to properly recycle therefore improving the environmental state of our planet.Computer Engineering Technolog

    Design of Home Network Architecture using ACE/TAO Real Time Event Service

    Get PDF
    This paper proposes a home network design based on publisher/subscriber architecture which is developed using ACE/TAO Real-time Event Service (RTES) as the middleware platform. This design addresses a feature to support a real-time implementation for home network application such as home automation. Home network participants have been classified into several components based on consumer and supplier implementation in the ACE/TAO RTES in order to simplify the design. To optimize the network utilization, events are filtered based on their type and source for each publisher and subscriber. To deal with heterogeneous type of home appliances, event header information has been extended to wrap more information. Each of events can be configured with a specific scheduling and priority setting to meet its quality of service (QoS) according to the requirement. Network performance in handling an increasing number of consumer or supplier has been evaluated and show an acceptable result. Keywords: Home Network, ACE/TAO, RTES, QoS

    Octopus - an energy-efficient architecture for wireless multimedia systems

    Get PDF
    Multimedia computing and mobile computing are two trends that will lead to a new application domain in the near future. However, the technological challenges to establishing this paradigm of computing are non-trivial. Personal mobile computing offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The approach we made to achieve such a system is to use autonomous, adaptable modules, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules that is placed in the data streams. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies

    TinkerCell: Modular CAD Tool for Synthetic Biology

    Get PDF
    Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. An application named TinkerCell has been created in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various C and Python programs that are hosted by TinkerCell via an extensive C and Python API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. Because TinkerCell associates parameters and equations in a model with their respective part, parts can be loaded from databases along with their parameters and rate equations. The modular network design can be used to exchange modules as well as test the concept of modularity in biological systems. The flexible modeling framework along with the C and Python API allows TinkerCell to serve as a host to numerous third-party algorithms. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at www.tinkercell.com.Comment: 23 pages, 20 figure

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Optical Network Models and their Application to Software-Defined Network Management

    Get PDF
    Software-defined networking is finding its way into optical networks. Here, it promises a simplification and unification of network management for optical networks allowing automation of operational tasks despite the highly diverse and vendor-specific commercial systems and the complexity and analog nature of optical transmission. A fundamental component for software-defined optical networking are common abstractions and interfaces. Currently, a number of models for optical networks are available. They all claim to provide open and vendor agnostic management of optical equipment. In this work, we survey and compare the most important models and propose an intent interface for creating virtual topologies that is integrated in the existing model ecosystem.Comment: Parts of the presented work has received funding from the European Commission within the H2020 Research and Innovation Programme, under grant agreeement n.645127, project ACIN
    • 

    corecore