9,608 research outputs found

    Applying semantic web technologies to knowledge sharing in aerospace engineering

    Get PDF
    This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses Ontologies as a central modelling strategy for the Capture of Knowledge from legacy docu-ments via automated means, or directly in systems interfacing with Knowledge workers, via user-defined, web-based forms. The domain ontologies used for Knowledge Capture also guide the retrieval of the Knowledge extracted from the data using a Semantic Search System that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale

    Opening up Magpie via semantic services

    Get PDF
    Magpie is a suite of tools supporting a ‘zero-cost’ approach to semantic web browsing: it avoids the need for manual annotation by automatically associating an ontology-based semantic layer to web resources. An important aspect of Magpie, which differentiates it from superficially similar hypermedia systems, is that the association between items on a web page and semantic concepts is not merely a mechanism for dynamic linking, but it is the enabling condition for locating services and making them available to a user. These services can be manually activated by a user (pull services), or opportunistically triggered when the appropriate web entities are encountered during a browsing session (push services). In this paper we analyze Magpie from the perspective of building semantic web applications and we note that earlier implementations did not fulfill the criterion of “open as to services”, which is a key aspect of the emerging semantic web. For this reason, in the past twelve months we have carried out a radical redesign of Magpie, resulting in a novel architecture, which is open both with respect to ontologies and semantic web services. This new architecture goes beyond the idea of merely providing support for semantic web browsing and can be seen as a software framework for designing and implementing semantic web applications

    A lightweight web video model with content and context descriptions for integration with linked data

    Get PDF
    The rapid increase of video data on the Web has warranted an urgent need for effective representation, management and retrieval of web videos. Recently, many studies have been carried out for ontological representation of videos, either using domain dependent or generic schemas such as MPEG-7, MPEG-4, and COMM. In spite of their extensive coverage and sound theoretical grounding, they are yet to be widely used by users. Two main possible reasons are the complexities involved and a lack of tool support. We propose a lightweight video content model for content-context description and integration. The uniqueness of the model is that it tries to model the emerging social context to describe and interpret the video. Our approach is grounded on exploiting easily extractable evolving contextual metadata and on the availability of existing data on the Web. This enables representational homogeneity and a firm basis for information integration among semantically-enabled data sources. The model uses many existing schemas to describe various ontology classes and shows the scope of interlinking with the Linked Data cloud

    Video semantic content analysis based on ontology

    Get PDF
    The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results

    Using fuzzy logic to handle the users' semantic descriptions in a music retrieval system

    Get PDF
    This paper provides an investigation of the potential application of fuzzy logic to semantic music recommendation. We show that a set of affective/emotive, structural and kinaesthetic descriptors can be used to formulate a query which allows the retrieval of intended music. A semantic music recommendation system was built, based on an elaborate study of potential users of music information retrieval systems. In this study analysis was made of the descriptors that best characterize the user's understanding of music. Significant relationships between expressive and structural descriptions of music were found. A straightforward fuzzy logic methodology was then applied to handle the quality ratings associated with the descriptions. Rigorous real-world testing of the semantic music recommendation system revealed high user satisfaction

    Optical tomography: Image improvement using mixed projection of parallel and fan beam modes

    Get PDF
    Mixed parallel and fan beam projection is a technique used to increase the quality images. This research focuses on enhancing the image quality in optical tomography. Image quality can be defined by measuring the Peak Signal to Noise Ratio (PSNR) and Normalized Mean Square Error (NMSE) parameters. The findings of this research prove that by combining parallel and fan beam projection, the image quality can be increased by more than 10%in terms of its PSNR value and more than 100% in terms of its NMSE value compared to a single parallel beam
    corecore