22 research outputs found

    Protocol Design and Performance Evaluation of Wake-up Radio enabled IoT Networks

    Get PDF
    publishedVersio

    Performance analysis of the contention access period in the slotted IEEE 802.15.4 for wireless body sensor networks

    Get PDF
    Wireless body sensor networks (WBSN) are a particular type of wireless sensor networks (WSN) that are becoming an important topic in the technological research community. Advances in the reduction of the power consumption and cost of these networks have led to solutions mature enough for their use in a broad range of applications such as sportsman or health monitoring. The development of those applications has been stimulated by the nalization of the IEEE 802.15.4 standard, which de nes the medium access control (MAC) and physical layer (PHY) for low-rate wireless personal area networks (LR-WPAN). One of the MAC schemes proposed is slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). This project analyzes the performance of this MAC, based on a state-of-the-art analytical model for a star topology, which captures the behavior of the MAC using two Markov chain models; the per-node state model and the channel state model. More importantly, we extend this model to include acknowledged tra c. The impact of including acknowledgments is evaluated in terms of energy consumption, throughput and latency. The performance predicted by the analytical model has been extensively veri ed with simulations using the ns-2 IEEE 802.15.4 contributed module. Throughput, energy consumption and latency analysis is performed. Additionally, we have simulated a statistical channel model describing the radio channel behavior around the human body to calculate the packet error rate (PER) found in a typical WBSN under the aforementioned standard. This PER is then introduced into our analytical model.Ingeniería de Telecomunicació

    Building blocks for the internet of things

    Get PDF

    Wireless Sensor Networks for Monitoring Applications

    Get PDF
    Wireless Sensor Networks (WSNs) are getting wide-spread attention since they became easily accessible with their low costs. One of the key elements of WSNs is distributed sensing. When the precise location of a signal of interest is unknown across the monitored region, distributing many sensors randomly/uniformly may yield with a better representation of the monitored random process than a traditional sensor deployment. In a typical WSN application the data sensed by nodes is usually sent to one (or more) central device, denoted as sink, which collects the information and can either act as a gateway towards other networks (e.g. Internet), where data can be stored, or be processed in order to command the actuators to perform special tasks. In such a scenario, a dense sensor deployment may create bottlenecks when many nodes competing to access the channel. Even though there are mitigation methods on the channel access, concurrent (parallel) transmissions may occur. In this study, always on the scope of monitoring applications, the involved development progress of two industrial projects with dense sensor deployments (eDIANA Project funded by European Commission and Centrale Adritica Project funded by Coop Italy) and the measurement results coming from several different test-beds evoked the necessity of a mathematical analysis on concurrent transmissions. To the best of our knowledge, in the literature there is no mathematical analysis of concurrent transmission in 2.4 GHz PHY of IEEE 802.15.4. In the thesis, experience stories of eDIANA and Centrale Adriatica Projects and a mathematical analysis of concurrent transmissions starting from O-QPSK chip demodulation to the packet reception rate with several different types of theoretical demodulators, are presented. There is a very good agreement between the measurements so far in the literature and the mathematical analysis

    Use of Inferential Statistics to Design Effective Communication Protocols for Wireless Sensor Networks

    Get PDF
    This thesis explores the issues and techniques associated with employing the principles of inferential statistics to design effective Medium Access Control (MAC), routing and duty cycle management strategies for multihop Wireless Sensor Networks (WSNs). The main objective of these protocols are to maximise the throughput of the network, to prolong the lifetime of nodes and to reduce the end-to-end delay of packets over a general network scenario without particular considerations for specific topology configurations, traffic patterns or routing policies. WSNs represent one of the leading-edge technologies that have received substantial research efforts due to their prominent roles in many applications. However, to design effective communication protocols for WSNs is particularly challenging due to the scarce resources of these networks and the requirement for large-scale deployment. The MAC, routing and duty cycle management protocols are amongst the important strategies that are required to ensure correct operations of WSNs. This thesis makes use of the inferential statistics field to design these protocols; inferential statistics was selected as it provides a rich design space with powerful approaches and methods. The MAC protocol proposed in this thesis exploits the statistical characteristics of the Gamma distribution to enable each node to adjust its contention parameters dynamically based on its inference for the channel occupancy. This technique reduces the service time of packets and leverages the throughput by improving the channel utilisation. Reducing the service time minimises the energy consumed in contention to access the channel which in turn prolongs the lifetime of nodes. The proposed duty cycle management scheme uses non-parametric Bayesian inference to enable each node to determine the best times and durations for its sleeping durations without posing overheads on the network. Hence the lifetime of node is prolonged by mitigating the amount of energy wasted in overhearing and idle listening. Prolonging the lifetime of nodes increases the throughput of the network and reduces the end-to-end delay as it allows nodes to route their packets over optimal paths for longer periods. The proposed routing protocol uses one of the state-of-the-art inference techniques dubbed spatial reasoning that enables each node to figure out the spatial relationships between nodes without overwhelming the network with control packets. As a result, the end-to-end delay is reduced while the throughput and lifetime are increased. Besides the proposed protocols, this thesis utilises the analytical aspects of statistics to develop rigorous analytical models that can accurately predict the queuing and medium access delay and energy consumption over multihop networks. Moreover, this thesis provides a broader perspective for design of communication protocols for WSNs by casting the operations of these networks in the domains of the artificial chemistry discipline and the harmony search optimisation algorithm

    IoT and Smart Cities: Modelling and Experimentation

    Get PDF
    Internet of Things (IoT) is a recent paradigm that envisions a near future, in which the objects of everyday life will communicate with one another and with the users, becoming an integral part of the Internet. The application of the IoT paradigm to an urban context is of particular interest, as it responds to the need to adopt ICT solutions in the city management, thus realizing the Smart City concept. Creating IoT and Smart City platforms poses many issues and challenges. Building suitable solutions that guarantee an interoperability of platform nodes and easy access, requires appropriate tools and approaches that allow to timely understand the effectiveness of solutions. This thesis investigates the above mentioned issues through two methodological approaches: mathematical modelling and experimenta- tion. On one hand, a mathematical model for multi-hop networks based on semi- Markov chains is presented, allowing to properly capture the behaviour of each node in the network while accounting for the dependencies among all links. On the other hand, a methodology for spatial downscaling of testbeds is proposed, implemented, and then exploited for experimental performance evaluation of proprietary but also standardised protocol solutions, considering smart lighting and smart building scenarios. The proposed downscaling procedure allows to create an indoor well-accessible testbed, such that experimentation conditions and performance on this testbed closely match the typical operating conditions and performance where the final solutions are expected to be deployed

    Intégration des méthodes formelles dans le développement des RCSFs

    Get PDF
    In this thesis, we have relied on formal techniques in order to first evaluate WSN protocols and then to propose solutions that meet the requirements of these networks. The thesis contributes to the modelling, analysis, design and evaluation of WSN protocols. In this context, the thesis begins with a survey on WSN and formal verification techniques. Focusing on the MAC layer, the thesis reviews proposed MAC protocols for WSN as well as their design challenges. The dissertation then proceeds to outline the contributions of this work. As a first proposal, we develop a stochastic generic model of the 802.11 MAC protocol for an arbitrary network topology and then perform probabilistic evaluation of the protocol using statistical model checking. Considering an alternative power source to operate WSN, energy harvesting, we move to the second proposal where a protocol designed for EH-WSN is modelled and various performance parameters are evaluated. Finally, the thesis explores mobility in WSN and proposes a new MAC protocol, named "Mobility and Energy Harvesting aware Medium Access Control (MEH-MAC)" protocol for dynamic sensor networks powered by ambient energy. The protocol is modelled and verified under several features

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks
    corecore