72 research outputs found

    Artificial Neural Network for Location Estimation in Wireless Communication Systems

    Get PDF
    In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments

    리만 최적화와 그래프 신경망에 기반한 저 랭크 행렬완성 알고리듬에 관한 연구

    Get PDF
    학위논문(박사)--서울대학교 대학원 :공과대학 전기·정보공학부,2020. 2. 심병효.최근, 일부의 관측치로부터 행렬의 모든 원소들을 복원하는 방법으로 저 랭크 행렬 완성 (LRMC)이 많은 주목을 받고 있다. LRMC는 추천 시스템, 위상 복원, 사물 인터넷 지역화, 영상 잡음 제거, 밀리미터 웨이브 통 신등을 포함한 다양한 응용분야에서 사용되고 있다. 본 논문에서는 LRMC에 대해 연구하여 LRMC의 가능성과 한계에 대한 더 나은 이해를 할 수 있도록 기존 결과들을 구조적이고 접근 가능한 방식으로 분류한다. 구체적으로, 최신 LRMC 기법들을 두 가지 범주로 분류한 다음 각각 의범주를 분석한다. 특히, 행렬의 고유한 성질과 같은 LRMC 기법을 사용 할때 고려해야 할 사항들을 분석한다. 기존의 LRMC 기법은 가우시안 랜 덤행렬과 같은 일반적인 상황에서 성공적이었으나 많은 실제 상황에서 는복원하고자 하는 저 랭크 행렬이 그래프 구조 또는 다양체 구조와 같은 비유클리드 구조를 가질 수 있다. 본 논문에서는 실제 응용에서 LRMC의 성능을 향상시키기 위해 이 런추가적인 구조가 활용될 수 있음을 보인다. 특히, 사물 인터넷 네트워 크지역화를 위한 유클리드 거리 행렬 완성 알고리듬을 제안한다. 유클리 드거리 행렬을 낮은 랭크를 갖는 양의 준정부호 행렬의 함수로 표현한다. 이러한 양의 준정부호 행렬들의 집합은 미분이 잘 정의되어 있는 리 만다양체를 형성하므로 유클리드 공간에서의 알고리듬을 적당히 변형하 여LRMC에 사용할 수 있다. LRMC를 위해 우리는 켤레 기울기를 활용 한리만 다양체에서의 지역화 (LRM-CG)라 불리는 변경된 켤레 기울기 기 반알고리듬을 제안한다. 제안하는 LRM-CG 알고리듬은 관측된 쌍 거리 가특이값에 의해 오염되는 시나리오로 쉽게 확장 될 수 있음을 보인다. 실제로 특이값을 희소 행렬로 모델링 한 다음 특이값 행렬을 규제 항으 로LRMC에 추가함으로써 특이값을 효과적으로 제어 할 수 있다. 분석을 통 해LRM-CG 알고리듬이 확장된 Wolfe 조건 아래 원래 유클리드 거리 행렬 에선형적으로 수렴하는 것을 보인다. 모의 실험을 통해 LRM-CG와 확 장버전이 유클리드 거리 행렬을 복구하는 데 효과적임을 보인다. 또한, 그래프 모델을 사용하여 표현될 수 있는 저 랭크 행렬 복원을 위 한그래프 신경망 (GNN) 기반 기법을 제안한다. 그래프 신경망 기반의 LRM C(GNN-LRMC)라 불리는 기법은 복원하고자 하는 행렬의 그래프 영 역특징들을 추출하기 위해 변형된 합성곱 연산을 사용한다. 이렇게 추출 된특징들을 GNN의 학습 과정에 활용하여 행렬의 원소들을 복원할 수 있다. 합성 및 실제 데이터를 사용한 모의 실험을 통하여 제안하는 GNN -LRMC의 우수한 복구 성능을 보였다.In recent years, low-rank matrix completion (LRMC) has received much attention as a paradigm to recover the unknown entries of a matrix from partial observations. It has a wide range of applications in many areas, including recommendation system, phase retrieval, IoT localization, image denoising, milimeter wave (mmWave) communication, to name just a few. In this dissertation, we present a comprehensive overview of low-rank matrix completion. In order to have better view, insight, and understanding of potentials and limitations of LRMC, we present early scattered results in a structured and accessible way. To be specific, we classify the state-of-the-art LRMC techniques into two main categories and then explain each category in detail. We further discuss issues to be considered, including intrinsic properties required for the matrix recovery, when one would like to use LRMC techniques. However, conventional LRMC techniques have been most successful on a general setting of the low-rank matrix, say, Gaussian random matrix. In many practical situations, the desired low rank matrix might have an underlying non-Euclidean structure, such as graph or manifold structure. In our work, we show that such additional data structures can be exploited to improve the recovery performance of LRMC in real-life applications. In particular, we propose a Euclidean distance matrix completion algorithm for internet of things (IoT) network localization. In our approach, we express the Euclidean distance matrix as a function of the low rank positive semidefinite (PSD) matrix. Since the set of these PSD matrices forms a Riemannian manifold in which the notation of differentiability can be defined, we can recycle, after a proper modification, an algorithm in the Euclidean space. In order to solve the low-rank matrix completion, we propose a modified conjugate gradient algorithm, referred to as localization in Riemannian manifold using conjugate gradient (LRM-CG). We also show that the proposed LRM-CG algorithm can be easily extended to the scenario in which the observed pairwise distances are contaminated by the outliers. In fact, by modeling outliers as a sparse matrix and then adding a regularization term of the outlier matrix into the low-rank matrix completion problem, we can effectively control the outliers. From the convergence analysis, we show that LRM-CG converges linearly to the original Euclidean distance matrix under the extended Wolfes conditions. From the numerical experiments, we demonstrate that LRM-CG as well as its extended version is effective in recovering the Euclidean distance matrix. In order to solve the LRMC problem in which the desired low-rank matrix can be expressed using a graph model, we also propose a graph neural network (GNN) scheme. Our approach, referred to as graph neural network-based low-rank matrix completion (GNN-LRMC), is to use a modified convolution operation to extract the features across the graph domain. The feature data enable the training process of the proposed GNN to reconstruct the unknown entries and also optimize the graph model of the desired low-rank matrix. We demonstrate the reconstruction performance of the proposed GNN-LRMC using synthetic and real-life datasets.Abstract i Contents iii List of Tables vii List of Figures viii 1 Introduction 2 1.1 Motivation 2 1.2 Outline of the dissertation 5 2 Low-Rank Matrix Completion 6 2.1 LRMC Applications 6 2.1.1 Recommendation system 6 2.1.2 Phase retrieval 8 2.1.3 Localization in IoT networks 8 2.1.4 Image compression and restoration 10 2.1.5 Massive multiple-input multiple-output (MIMO) 12 2.1.6 Millimeter wave (mmWave) communication 12 2.2 Intrinsic Properties of LRMC 13 2.2.1 Sparsity of Observed Entries 13 2.2.2 Coherence 18 2.3 Rank Minimization Problem 22 2.4 LRMC Algorithms Without the Rank Information 25 2.4.1 Nuclear Norm Minimization (NNM) 25 2.4.2 Singular Value Thresholding (SVT) 28 2.4.3 Iteratively Reweighted Least Squares (IRLS) Minimization 31 2.5 LRMC Algorithms Using Rank Information 32 2.5.1 Greedy Techniques 34 2.5.2 Alternating Minimization Techniques 37 2.5.3 Optimization over Smooth Riemannian Manifold 39 2.5.4 Truncated NNM 41 2.6 Performance Guarantee 44 2.7 Empirical Performance Evaluation 46 2.8 Choosing the Right Matrix Completion Algorithms 55 3 IoT Localization Via LRMC 56 3.1 Problem Model 57 3.2 Optimization over Riemannian Manifold 61 3.3 Localization in Riemannian Manifold Using Conjugate Gradient (LRMCG) 66 3.4 Computational Complexity 71 3.5 Recovery Condition Analysis 73 3.5.1 Convergence of LRM-CG at Sampled Entries 73 3.5.2 Exact Recovery of Euclidean Distance Matrices 79 3.5.3 Discussion on A3 86 4 Extended LRM-CG for The Outlier Problem 92 4.1 Problem Model 94 4.2 Extended LRM-CG 94 4.3 Numerical Evaluation 97 4.3.1 Simulation Setting 98 4.3.2 Convergence Efficiency 99 4.3.3 Performance Evaluation 99 4.3.4 Outlier Problem 107 4.3.5 Real Data 107 5 LRMC Via Graph Neural Network 112 5.1 Graph Model 116 5.2 Proposed GNN-LRMC 116 5.2.1 Adaptive Model 119 5.2.2 Multilayer GNN 119 5.2.3 Output Model 122 5.2.4 Training Cost Function 123 5.3 Numerical Evaluation 123 6 Conculsion 127 A Proof of Lemma 6 129 B Proof of Theorem 7 131 C Proof of Lemma 8 134 D Proof of Theorem 9 136 E Proof of Lemma 10 140 F Proof of Lemma 12 141 G Proof of Lemma 13 142 H Proof of Lemma 14 144 I Proof of Lemma 15 146 J Proof of Lemma 17 151 K Proof of Lemma 19 154 L Proof of Lemma 20 156 M Proof of Lemma 21 158 Abstract (In Korean) 173 Acknowlegement 175Docto

    Node localization for indoor tracking using artificial neural network

    Get PDF
    Wireless sensor network (WSN) always comes up with the need of deploying either mobile or immobile sensor nodes or both. Wireless communication among these nodes is crucial and it requires identifying the location of these nodes within a specific region. Global positioning system (GPS) is widely used for location tracking. However, when it comes to WSN, GPS has its limitations, due to its high power consumption and the overhead of additional hardware cost. The research challenge here lies in the efficient location tracking of wireless sensor nodes, especially in closed indoor and outdoor environments. This paper comes up with a simple and easy-to-implement technique using artificial neural networks (ANNs) to manipulate the location of the sensor nodes. In this paper, the back-propagation network training algorithm for providing supervised learning to multilayer perceptron is generalized to synthesize the WSN and gives out 2D Cartesian coordinates of the nodes. The technique is both cost-efficient and achieves 98% accuracy

    Improving time efficiency of feedforward neural network learning

    Get PDF
    Feedforward neural networks have been widely studied and used in many applications in science and engineering. The training of this type of networks is mainly undertaken using the well-known backpropagation based learning algorithms. One major problem with this type of algorithms is the slow training convergence speed, which hinders their applications. In order to improve the training convergence speed of this type of algorithms, many researchers have developed different improvements and enhancements. However, the slow convergence problem has not been fully addressed. This thesis makes several contributions by proposing new backpropagation learning algorithms based on the terminal attractor concept to improve the existing backpropagation learning algorithms such as the gradient descent and Levenberg-Marquardt algorithms. These new algorithms enable fast convergence both at a distance from and in a close range of the ideal weights. In particular, a new fast convergence mechanism is proposed which is based on the fast terminal attractor concept. Comprehensive simulation studies are undertaken to demonstrate the effectiveness of the proposed backpropagataion algorithms with terminal attractors. Finally, three practical application cases of time series forecasting, character recognition and image interpolation are chosen to show the practicality and usefulness of the proposed learning algorithms with comprehensive comparative studies with existing algorithms

    Source localization within a uniform circular sensor array

    Get PDF
    Traditional source localization problems have been considered with linear and planar antenna arrays. In this research work, we assume that the sources are located within a uniformly spaced circular sensor array. Using a modified Metropolis algorithm and Polak-Ribière conjugate gradients, a hybrid optimization algorithm is proposed to localize sources within a two dimensional uniform circular sensor array, which suffers from far field attenuation. The developed algorithm is capable of accurately locating the position of a single, stationary source within 1% of a wavelength and 1° of angular displacement. In the single stationary source case, the simulated Cramer-Rao Lower Bound has also shown low noise susceptibility for a reasonable signal to noise ratio. Additionally, the localization of multiple stationary sources within the array is presented and tracking capabilities for a slowly moving non-stationary source is also demonstrated. In each case, results are presented, analyzed and discussed. Furthermore, the proposed algorithm has also been validated through hardware experimentation. The design and construction of four microstrip patch antennas and a wire antenna have been completed to emulate a circular sensor array and the enclosed source, respectively. Within this array, data has been collected at the four sensors from several fixed source positions and fitted into the proposed algorithm for source localization. The convergence of the algorithm with both simulated data and data collected from hardware are compared and sources of error and potential improvements are proposed

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Intelligent Processing in Wireless Communications Using Particle Swarm Based Methods

    Get PDF
    There are a lot of optimization needs in the research and design of wireless communica- tion systems. Many of these optimization problems are Nondeterministic Polynomial (NP) hard problems and could not be solved well. Many of other non-NP-hard optimization problems are combinatorial and do not have satisfying solutions either. This dissertation presents a series of Particle Swarm Optimization (PSO) based search and optimization algorithms that solve open research and design problems in wireless communications. These problems are either avoided or solved approximately before. PSO is a bottom-up approach for optimization problems. It imposes no conditions on the underlying problem. Its simple formulation makes it easy to implement, apply, extend and hybridize. The algorithm uses simple operators like adders, and multipliers to travel through the search space and the process requires just five simple steps. PSO is also easy to control because it has limited number of parameters and is less sensitive to parameters than other swarm intelligence algorithms. It is not dependent on initial points and converges very fast. Four types of PSO based approaches are proposed targeting four different kinds of problems in wireless communications. First, we use binary PSO and continuous PSO together to find optimal compositions of Gaussian derivative pulses to form several UWB pulses that not only comply with the FCC spectrum mask, but also best exploit the avail- able spectrum and power. Second, three different PSO based algorithms are developed to solve the NLOS/LOS channel differentiation, NLOS range error mitigation and multilateration problems respectively. Third, a PSO based search method is proposed to find optimal orthogonal code sets to reduce the inter carrier interference effects in an frequency redundant OFDM system. Fourth, a PSO based phase optimization technique is proposed in reducing the PAPR of an frequency redundant OFDM system. The PSO based approaches are compared with other canonical solutions for these communication problems and showed superior performance in many aspects. which are confirmed by analysis and simulation results provided respectively. Open questions and future Open questions and future works for the dissertation are proposed to serve as a guide for the future research efforts

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Outils d'analyse, de modélisation et de commande pour les radiocommunications Application aux amplificateurs de puissance

    Get PDF
    L'évolution croissante des télécommunications résulte de la combinaison de plusieurs facteurs comme les progrès de l'électronique, de la micro-électronique, de la radiofréquence mais aussi des avancées des techniques de communications numériques. Dans ce contexte, les études s'orientent de plus en plus vers l'amélioration de la couverture et de la qualité de service offertes aux usagers. C'est dans ce contexte que s'inscrivent les travaux exposés dans le cadre de cette Habilitation à Diriger des Recherches. Les problématiques soulevées concernent : - la connaissance et la maîtrise du comportement des composants en présence de signaux large bande, multiporteuses, - l'amélioration de la qualité des transmissions en tenant compte des aspects énergétiques, - la reconfigurabilité et l'adaptation des nouveaux systèmes à la multiplication des normes et des standards de communications. Pour chaque problématique, nous avons proposé des solutions théoriques et pratiques avec comme fil conducteur l'utilisation et la mise en \oe uvre d'outils issus de l'Automatique comme l'estimation paramétrique, la commande et la linéarisation, l'optimisation, etc. Concernant la modélisation des fonctions électroniques RF, je présente mes travaux concernant la prise en compte des effets statiques et dynamiques en temps continu et discret. Pour les circuits hautes fréquences qui se caractérisent par des constantes de temps avec des ordres de grandeurs divers, nous avons montré qu'il est important d'envisager la modélisation selon l'application visée et en déployant des outils d'estimation paramétrique adaptés. Des problématiques telles que la normalisation de l'espace paramétrique, l'initialisation, la convergence sont étudiées pour répondre aux caractéristiques des systèmes de radiocommunications.Dans le chapitre consacré à l'amélioration de la linéarité et du rendement, nous avons présenté des techniques de correction des imperfections des amplificateurs de puissances ainsi que des méthodes de traitement du signal qui permettent de réduire leurs impacts sur la transmission. Concernant la linéarisation, nous avons commencé par une comparaison d'une technique Feedback et d'un linéariseur à base d'une prédistorsion polynomiale sans mémoire. Cette étude a mis en évidence l'intérêt d'adjoindre de la mémoire sous forme de retards dans le linéariseur. Les fortes fluctuations des signaux multiporteuses, mesurées par le PAPR pour Peak-to-Average Power Ratio, contribuent aussi à dégrader le bilan énergétique de l'émetteur. La majorité des travaux sur la réduction du PAPR se limite à l'étude des performances en termes de gain de réduction, sans aborder la qualité de transmission en présence d'imperfections réalistes des éléments non-linéaires. C'est dans ce contexte que nous avons analysé cette problématique pour un système MIMO-OFDM en boucle fermée avec prise en compte du canal, des non-linéarités, des effets mémoires et des critères visuels permettant d'évaluer la qualité des transmissions de données multimédias.Le développement d'architectures entièrement numérique, reconfigurables est traité en dernière partie de ce cette HDR. Pour cette large thématique, nous proposons des améliorations pour des coefficients des modulateurs afin d'obtenir une fonction de transfert du bruit respectant un gabarit fréquentiel donné. La correction des erreurs de calcul dus aux coefficients du type 1/2L2^L. Cette correction est basée sur la ré-injection de l'erreur au sein de la boucle directe à travers un filtre numérique
    corecore