415 research outputs found

    A Fixed Parameter Tractable Integer Program for Finding the Maximum Order Preserving Submatrix

    Get PDF
    International audienceOrder-preserving submatrices are an important tool for the analysis of gene expression data. As finding large order-preserving submatrices is a computationally hard problem, previous work has investigated both exact but exponential-time as well as polynomial-time but inexact algorithms for finding large order-preserving submatrices. In this paper, we propose a novel exact algorithm to find maximum order preserving submatrices which is fixed parameter tractable with respect to the number of columns of the provided gene expression data. In particular, our algorithm is based on solving a sequence of mixed integer linear programs and it exhibits better guarantees as well as better runtime performance as compared to the state-of-the-art exact algorithms. Our empirical study in benchmark datasets shows large improvement in terms of computational speed

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    A structural approach to kernels for ILPs: Treewidth and Total Unimodularity

    Get PDF
    Kernelization is a theoretical formalization of efficient preprocessing for NP-hard problems. Empirically, preprocessing is highly successful in practice, for example in state-of-the-art ILP-solvers like CPLEX. Motivated by this, previous work studied the existence of kernelizations for ILP related problems, e.g., for testing feasibility of Ax <= b. In contrast to the observed success of CPLEX, however, the results were largely negative. Intuitively, practical instances have far more useful structure than the worst-case instances used to prove these lower bounds. In the present paper, we study the effect that subsystems with (Gaifman graph of) bounded treewidth or totally unimodularity have on the kernelizability of the ILP feasibility problem. We show that, on the positive side, if these subsystems have a small number of variables on which they interact with the remaining instance, then we can efficiently replace them by smaller subsystems of size polynomial in the domain without changing feasibility. Thus, if large parts of an instance consist of such subsystems, then this yields a substantial size reduction. We complement this by proving that relaxations to the considered structures, e.g., larger boundaries of the subsystems, allow worst-case lower bounds against kernelization. Thus, these relaxed structures can be used to build instance families that cannot be efficiently reduced, by any approach.Comment: Extended abstract in the Proceedings of the 23rd European Symposium on Algorithms (ESA 2015

    Festparameter-Algorithmen fuer die Konsens-Analyse Genomischer Daten

    Get PDF
    Fixed-parameter algorithms offer a constructive and powerful approach to efficiently obtain solutions for NP-hard problems combining two important goals: Fixed-parameter algorithms compute optimal solutions within provable time bounds despite the (almost inevitable) computational intractability of NP-hard problems. The essential idea is to identify one or more aspects of the input to a problem as the parameters, and to confine the combinatorial explosion of computational difficulty to a function of the parameters such that the costs are polynomial in the non-parameterized part of the input. This makes especially sense for parameters which have small values in applications. Fixed-parameter algorithms have become an established algorithmic tool in a variety of application areas, among them computational biology where small values for problem parameters are often observed. A number of design techniques for fixed-parameter algorithms have been proposed and bounded search trees are one of them. In computational biology, however, examples of bounded search tree algorithms have been, so far, rare. This thesis investigates the use of bounded search tree algorithms for consensus problems in the analysis of DNA and RNA data. More precisely, we investigate consensus problems in the contexts of sequence analysis, of quartet methods for phylogenetic reconstruction, of gene order analysis, and of RNA secondary structure comparison. In all cases, we present new efficient algorithms that incorporate the bounded search tree paradigm in novel ways. On our way, we also obtain results of parameterized hardness, showing that the respective problems are unlikely to allow for a fixed-parameter algorithm, and we introduce integer linear programs (ILP's) as a tool for classifying problems as fixed-parameter tractable, i.e., as having fixed-parameter algorithms. Most of our algorithms were implemented and tested on practical data.Festparameter-Algorithmen bieten einen konstruktiven Ansatz zur Loesung von kombinatorisch schwierigen, in der Regel NP-harten Problemen, der zwei Ziele beruecksichtigt: innerhalb von beweisbaren Laufzeitschranken werden optimale Ergebnisse berechnet. Die entscheidende Idee ist dabei, einen oder mehrere Aspekte der Problemeingabe als Parameter der Problems aufzufassen und die kombinatorische Explosion der algorithmischen Schwierigkeit auf diese Parameter zu beschraenken, so dass die Laufzeitkosten polynomiell in Bezug auf den nicht-parametrisierten Teil der Eingabe sind. Gibt es einen Festparameter-Algorithmus fuer ein kombinatorisches Problem, nennt man das Problem festparameter-handhabbar. Die Entwicklung von Festparameter-Algorithmen macht vor allem dann Sinn, wenn die betrachteten Parameter im Anwendungsfall nur kleine Werte annehmen. Festparameter-Algorithmen sind zu einem algorithmischen Standardwerkzeug in vielen Anwendungsbereichen geworden, unter anderem in der algorithmischen Biologie, wo in vielen Anwendungen kleine Parameterwerte beobachtet werden koennen. Zu den bekannten Techniken fuer den Entwurf von Festparameter-Algorithmen gehoeren unter anderem groessenbeschraenkte Suchbaeume. In der algorithmischen Biologie gibt es bislang nur wenige Beispiele fuer die Anwendung von groessenbeschraenkten Suchbaeumen. Diese Arbeit untersucht den Einsatz groessenbeschraenkter Suchbaeume fuer NP-harte Konsens-Probleme in der Analyse von DNS- und RNS-Daten. Wir betrachten Konsens-Probleme in der Analyse von DNS-Sequenzdaten, in der Analyse von sogenannten Quartettdaten zur Erstellung von phylogenetischen Hypothesen, in der Analyse von Daten ueber die Anordnung von Genen und beim Vergleich von RNS-Strukturdaten. In allen Faellen stellen wir neue effiziente Algorithmen vor, in denen das Paradigma der groessenbeschraenkten Suchbaeume auf neuartige Weise realisiert wird. Auf diesem Weg zeigen wir auch Ergebnisse parametrisierter Haerte, die zeigen, dass fuer die dabei betrachteten Probleme ein Festparameter-Algorithmus unwahrscheinlich ist. Ausserdem fuehren wir ganzzahliges lineares Programmieren als eine neue Technik ein, um die Festparameter-Handhabbarkeit eines Problems zu zeigen. Die Mehrzahl der hier vorgestellten Algorithmen wurde implementiert und auf Anwendungsdaten getestet

    Twin-width IV: ordered graphs and matrices

    Full text link
    We establish a list of characterizations of bounded twin-width for hereditary, totally ordered binary structures. This has several consequences. First, it allows us to show that a (hereditary) class of matrices over a finite alphabet either contains at least n!n! matrices of size n×nn \times n, or at most cnc^n for some constant cc. This generalizes the celebrated Stanley-Wilf conjecture/Marcus-Tardos theorem from permutation classes to any matrix class over a finite alphabet, answers our small conjecture [SODA '21] in the case of ordered graphs, and with more work, settles a question first asked by Balogh, Bollob\'as, and Morris [Eur. J. Comb. '06] on the growth of hereditary classes of ordered graphs. Second, it gives a fixed-parameter approximation algorithm for twin-width on ordered graphs. Third, it yields a full classification of fixed-parameter tractable first-order model checking on hereditary classes of ordered binary structures. Fourth, it provides a model-theoretic characterization of classes with bounded twin-width.Comment: 53 pages, 18 figure

    Speeding-up Dynamic Programming with Representative Sets - An Experimental Evaluation of Algorithms for Steiner Tree on Tree Decompositions

    Full text link
    Dynamic programming on tree decompositions is a frequently used approach to solve otherwise intractable problems on instances of small treewidth. In recent work by Bodlaender et al., it was shown that for many connectivity problems, there exist algorithms that use time, linear in the number of vertices, and single exponential in the width of the tree decomposition that is used. The central idea is that it suffices to compute representative sets, and these can be computed efficiently with help of Gaussian elimination. In this paper, we give an experimental evaluation of this technique for the Steiner Tree problem. A comparison of the classic dynamic programming algorithm and the improved dynamic programming algorithm that employs the table reduction shows that the new approach gives significant improvements on the running time of the algorithm and the size of the tables computed by the dynamic programming algorithm, and thus that the rank based approach from Bodlaender et al. does not only give significant theoretical improvements but also is a viable approach in a practical setting, and showcases the potential of exploiting the idea of representative sets for speeding up dynamic programming algorithms
    corecore