25,264 research outputs found

    An Empirical Investigation of How Degree Neutrality Affects GP Search

    Get PDF
    Over the last years, neutrality has inspired many researchers in the area of Evolutionary Computation (EC) systems in the hope that it can aid evolution. However, there are contradictory results on the effects of neutrality in evolutionary search. The aim of this paper is to understand how neutrality - named in this paper degree neutrality - affects GP search. For analysis purposes, we use a well-defined measure of hardness (i.e., fitness distance correlation) as an indicator of difficulty in the absence and in the presence of neutrality, we propose a novel approach to normalise distances between a pair of trees and finally, we use a problem with deceptive features where GP is well-known to have poor performance and see the effects of neutrality in GP search

    The influence of mutation on population dynamics in multiobjective genetic programming

    Get PDF
    Using multiobjective genetic programming with a complexity objective to overcome tree bloat is usually very successful but can sometimes lead to undesirable collapse of the population to all single-node trees. In this paper we report a detailed examination of why and when collapse occurs. We have used different types of crossover and mutation operators (depth-fair and sub-tree), different evolutionary approaches (generational and steady-state), and different datasets (6-parity Boolean and a range of benchmark machine learning problems) to strengthen our conclusion. We conclude that mutation has a vital role in preventing population collapse by counterbalancing parsimony pressure and preserving population diversity. Also, mutation controls the size of the generated individuals which tends to dominate the time needed for fitness evaluation and therefore the whole evolutionary process. Further, the average size of the individuals in a GP population depends on the evolutionary approach employed. We also demonstrate that mutation has a wider role than merely culling single-node individuals from the population; even within a diversity-preserving algorithm such as SPEA2 mutation has a role in preserving diversity

    Effective Fitness Landscapes for Evolutionary Systems

    Full text link
    In evolution theory the concept of a fitness landscape has played an important role, evolution itself being portrayed as a hill-climbing process on a rugged landscape. In this article it is shown that in general, in the presence of other genetic operators such as mutation and recombination, hill-climbing is the exception rather than the rule. This descrepency can be traced to the different ways that the concept of fitness appears --- as a measure of the number of fit offspring, or as a measure of the probability to reach reproductive age. Effective fitness models the former not the latter and gives an intuitive way to understand population dynamics as flows on an effective fitness landscape when genetic operators other than selection play an important role. The efficacy of the concept is shown using several simple analytic examples and also some more complicated cases illustrated by simulations.Comment: 11 pages, 8 postscript figure

    Deconvolving mutational patterns of poliovirus outbreaks reveals its intrinsic fitness landscape.

    Get PDF
    Vaccination has essentially eradicated poliovirus. Yet, its mutation rate is higher than that of viruses like HIV, for which no effective vaccine exists. To investigate this, we infer a fitness model for the poliovirus viral protein 1 (vp1), which successfully predicts in vitro fitness measurements. This is achieved by first developing a probabilistic model for the prevalence of vp1 sequences that enables us to isolate and remove data that are subject to strong vaccine-derived biases. The intrinsic fitness constraints derived for vp1, a capsid protein subject to antibody responses, are compared with those of analogous HIV proteins. We find that vp1 evolution is subject to tighter constraints, limiting its ability to evade vaccine-induced immune responses. Our analysis also indicates that circulating poliovirus strains in unimmunized populations serve as a reservoir that can seed outbreaks in spatio-temporally localized sub-optimally immunized populations
    • …
    corecore