74,716 research outputs found

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    Expert systems and finite element structural analysis - a review

    Get PDF
    Finite element analysis of many engineering systems is practised more as an art than as a science . It involves high level expertise (analytical as well as heuristic) regarding problem modelling (e .g. problem specification,13; choosing the appropriate type of elements etc .), optical mesh design for achieving the specified accuracy (e .g . initial mesh selection, adaptive mesh refinement), selection of the appropriate type of analysis and solution13; routines and, finally, diagnosis of the finite element solutions . Very often such expertise is highly dispersed and is not available at a single place with a single expert. The design of an expert system, such that the necessary expertise is available to a novice to perform the same job even in the absence of trained experts, becomes an attractive proposition. 13; In this paper, the areas of finite element structural analysis which require experience and decision-making capabilities are explored . A simple expert system, with a feasible knowledge base for problem modelling, optimal mesh design, type of analysis and solution routines, and diagnosis, is outlined. Several efforts in these directions, reported in the open literature, are also reviewed in this paper

    Technology assessment between risk, uncertainty and ignorance

    Get PDF
    The use of most if not all technologies is accompanied by negative side effects, While we may profit from today’s technologies, it is most often future generations who bear most risks. Risk analysis therefore becomes a delicate issue, because future risks often cannot be assigned a meaningful occurance probability. This paper argues that technology assessement most often deal with uncertainty and ignorance rather than risk when we include future generations into our ethical, political or juridal thinking. This has serious implications as probabilistic decision approaches are not applicable anymore. I contend that a virtue ethical approach in which dianoetic virtues play a central role may supplement a welfare based ethics in order to overcome the difficulties in dealing with uncertainty and ignorance in technology assessement

    Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises

    Get PDF
    The major success of fuzzy logic in the field of remote control opened the door to its application in many other fields, including finance. However, there has not been an updated and comprehensive literature review on the uses of fuzzy logic in the financial field. For that reason, this study attempts to critically examine fuzzy logic as an effective, useful method to be applied to financial research and, particularly, to the management of banking crises. The data sources were Web of Science and Scopus, followed by an assessment of the records according to pre-established criteria and an arrangement of the information in two main axes: financial markets and corporate finance. A major finding of this analysis is that fuzzy logic has not yet been used to address banking crises or as an alternative to ensure the resolvability of banks while minimizing the impact on the real economy. Therefore, we consider this article relevant for supervisory and regulatory bodies, as well as for banks and academic researchers, since it opens the door to several new research axes on banking crisis analyses using artificial intelligence techniques

    Statistical relational learning with soft quantifiers

    Get PDF
    Quantification in statistical relational learning (SRL) is either existential or universal, however humans might be more inclined to express knowledge using soft quantifiers, such as ``most'' and ``a few''. In this paper, we define the syntax and semantics of PSL^Q, a new SRL framework that supports reasoning with soft quantifiers, and present its most probable explanation (MPE) inference algorithm. To the best of our knowledge, PSL^Q is the first SRL framework that combines soft quantifiers with first-order logic rules for modelling uncertain relational data. Our experimental results for link prediction in social trust networks demonstrate that the use of soft quantifiers not only allows for a natural and intuitive formulation of domain knowledge, but also improves the accuracy of inferred results
    corecore