1,038 research outputs found

    A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography

    Full text link
    We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy's foundational work associated with the work of Boyer and Grabiner; and to Bishop's constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.Comment: 57 pages; 3 figures. Corrected misprint

    Foundational aspects of multiscale digitization

    No full text
    International audienceIn this article, we describe the theoretical foundations of the Ω-arithmetization. This method provides a multi-scale discretization of a continuous function that is a solution of a differential equation. This discretization process is based on the Harthong-Reeb line HRω. The Harthong-Reeb line is a linear space that is both discrete and continuous. This strange line HRω stems from a nonstandard point of view on arithmetic based, in this paper, on the concept of Ω-numbers introduced by Laugwitz and Schmieden. After a full description of this nonstandard background and of the first properties of HRω, we introduce the Ω-arithmetization and we apply it to some significant examples. An important point is that the constructive properties of our approach leads to algorithms which can be exactly translated into functional computer programs without uncontrolled numerical error. Afterwards, we investigate to what extent HRω fits Bridges's axioms of the constructive continuum. Finally, we give an overview of a formalization of the Harthong-Reeb line with the Coq proof assistant

    Ten Misconceptions from the History of Analysis and Their Debunking

    Full text link
    The widespread idea that infinitesimals were "eliminated" by the "great triumvirate" of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum with a single number system. Such anachronistic distortions characterize the received interpretation of Stevin, Leibniz, d'Alembert, Cauchy, and others.Comment: 46 pages, 4 figures; Foundations of Science (2012). arXiv admin note: text overlap with arXiv:1108.2885 and arXiv:1110.545

    Varieties of Mathematics in Economics- A Partial View

    Get PDF
    Real analysis, founded on the Zermelo-Fraenkel axioms, buttressed by the axiom of choice, is the dominant variety of mathematics utilized in the formalization of economic theory. The accident of history that led to this dominance is not inevitable, especially in an age when the digital computer seems to be ubiquitous in research, teaching and learning. At least three other varieties of mathematics, each underpinned by its own mathematical logic, have come to be used in the formalization of mathematics in more recent years. To set theory, model theory, proof theory and recursion theory correspond, roughly speaking, real analysis, non-standard analysis, constructive analysis and computable analysis. These other varieties, we claim, are more consistent with the intrinsic nature and ontology of economic concepts. In this paper we discuss aspects of the way real analysis dominates the mathematical formalization of economic theory and the prospects for overcoming this dominance.

    Infinity

    Get PDF
    This essay surveys the different types of infinity that occur in pure and applied mathematics, with emphasis on: 1. the contrast between potential infinity and actual infinity; 2. Cantor's distinction between transfinite sets and absolute infinity; 3. the constructivist view of infinite quantifiers and the meaning of constructive proof; 4. the concept of feasibility and the philosophical problems surrounding feasible arithmetic; 5. Zeno's paradoxes and modern paradoxes of physical infinity involving supertasks

    Paradoxes of the applied infinite : infinite idealizations in Physics

    Get PDF
    corecore