51 research outputs found

    A First Characterization of Anycast Traffic from Passive Traces

    Get PDF
    Abstract—IP anycast routes packets to the topologically nearest server according to BGP proximity. In the last years, new players have started adopting this technology to serve web content via Anycast-enabled CDNs (A-CDN). To the best of our knowledge, in the literature, there are studies that focus on a specific A-CDN deployment, but little is known about the users and the services that A-CDNs are serving in the Internet at large. This prompted us to perform a passive characterization study, bringing out the principal A-CDN actors in our monitored setup, the services they offer, their penetration, etc. Results show a very heterogeneous picture, with A-CDN empowered services that are very popular (e.g., Twitter or Bing), serve a lot of different contents (e.g., Wordpress or adult content), and even include audio/video streaming (e.g., Soundcloud, or Vine). Our measurements show that the A-CDN technology is quite mature and popular, with more than 50% of web users that access content served by a A-CDN during peak time

    Machine Learning and Big Data Methodologies for Network Traffic Monitoring

    Get PDF
    Over the past 20 years, the Internet saw an exponential grown of traffic, users, services and applications. Currently, it is estimated that the Internet is used everyday by more than 3.6 billions users, who generate 20 TB of traffic per second. Such a huge amount of data challenge network managers and analysts to understand how the network is performing, how users are accessing resources, how to properly control and manage the infrastructure, and how to detect possible threats. Along with mathematical, statistical, and set theory methodologies machine learning and big data approaches have emerged to build systems that aim at automatically extracting information from the raw data that the network monitoring infrastructures offer. In this thesis I will address different network monitoring solutions, evaluating several methodologies and scenarios. I will show how following a common workflow, it is possible to exploit mathematical, statistical, set theory, and machine learning methodologies to extract meaningful information from the raw data. Particular attention will be given to machine learning and big data methodologies such as DBSCAN, and the Apache Spark big data framework. The results show that despite being able to take advantage of mathematical, statistical, and set theory tools to characterize a problem, machine learning methodologies are very useful to discover hidden information about the raw data. Using DBSCAN clustering algorithm, I will show how to use YouLighter, an unsupervised methodology to group caches serving YouTube traffic into edge-nodes, and latter by using the notion of Pattern Dissimilarity, how to identify changes in their usage over time. By using YouLighter over 10-month long races, I will pinpoint sudden changes in the YouTube edge-nodes usage, changes that also impair the end users’ Quality of Experience. I will also apply DBSCAN in the deployment of SeLINA, a self-tuning tool implemented in the Apache Spark big data framework to autonomously extract knowledge from network traffic measurements. By using SeLINA, I will show how to automatically detect the changes of the YouTube CDN previously highlighted by YouLighter. Along with these machine learning studies, I will show how to use mathematical and set theory methodologies to investigate the browsing habits of Internauts. By using a two weeks dataset, I will show how over this period, the Internauts continue discovering new websites. Moreover, I will show that by using only DNS information to build a profile, it is hard to build a reliable profiler. Instead, by exploiting mathematical and statistical tools, I will show how to characterize Anycast-enabled CDNs (A-CDNs). I will show that A-CDNs are widely used either for stateless and stateful services. That A-CDNs are quite popular, as, more than 50% of web users contact an A-CDN every day. And that, stateful services, can benefit of A-CDNs, since their paths are very stable over time, as demonstrated by the presence of only a few anomalies in their Round Trip Time. Finally, I will conclude by showing how I used BGPStream an open-source software framework for the analysis of both historical and real-time Border Gateway Protocol (BGP) measurement data. By using BGPStream in real-time mode I will show how I detected a Multiple Origin AS (MOAS) event, and how I studies the black-holing community propagation, showing the effect of this community in the network. Then, by using BGPStream in historical mode, and the Apache Spark big data framework over 16 years of data, I will show different results such as the continuous growth of IPv4 prefixes, and the growth of MOAS events over time. All these studies have the aim of showing how monitoring is a fundamental task in different scenarios. In particular, highlighting the importance of machine learning and of big data methodologies

    NetCluster: A clustering-based framework to analyze internet passive measurements data

    Get PDF
    Internet measured data collected via passive measurement are analyzed to obtain localization information on nodes by clustering (i.e., grouping together) nodes that exhibit similar network path properties. Since traditional clustering algorithms fail to correctly identify clusters of homogeneous nodes, we propose the NetCluster novel framework, suited to analyze Internet measurement datasets. We show that the proposed framework correctly analyzes synthetically generated traces. Finally, we apply it to real traces collected at the access link of Politecnico di Torino campus LAN and discuss the network characteristics as seen at the vantage point

    Latency-driven replication for globally distributed systems

    Get PDF
    Steen, M.R. van [Promotor]Pierre, G.E.O. [Copromotor

    Analysis of Web Protocols Evolution on Internet Traffic

    Get PDF
    This research focus on the analysis of ten years of Internet traffic, from 2004 until 2013, captured and measured by Mawi Lab at a link connecting Japan to the United States of America. The collected traffic was analysed for each of the days in that period, and conjointly in that timeframe. Initial research questions included the test of the hypothesis of weather the change in Internet applications and Internet usage patterns were observable in the generated traffic or not. Several protocols were thoroughly analysed, including HTTP, HTTPS, TCP, UDP, IPv4, IPv6, SMTP, DNS. The effect of the transition from IPv4 to IPv6 was also analysed. Conclusions were drawn and the research questions were answered and the research hypothesis was confirmed.Esta pesquisa foca-se na análise de dez anos de tráfego de Internet, a partir de 2004 até 2013, capturado e medido pelo Mawi Lab numa ligação de fibra óptica entre o Japão e os Estados Unidos da América. O tráfego recolhido foi analisado para cada um dos dias nesse período, e também conjuntamente nesse período. As questões de pesquisa iniciais incluíram testar a hipótese de ser observável no tráfego gerado, a alteração das aplicações em uso na Internet e a alteração dos padrões de uso da Internet. Vários protocolos foram analisados exaustivamente, incluindo HTTP, HTTPS, TCP, UDP, IPv4, IPv6, SMTP e DNS. O efeito da transição do IPv4 para o IPv6 também foi analisado. As conclusões foram tiradas, as questões de pesquisa foram respondidas e a hipótese de pesquisa foi confirmada
    • …
    corecore