110 research outputs found

    An Efficient Global Optimization Algorithm with Adaptive Estimates of the Local Lipschitz Constants

    Full text link
    In this work, we present a new deterministic partition-based Global Optimization (GO) algorithm that uses estimates of the local Lipschitz constants associated with different sub-regions of the domain of the objective function. The estimates of the local Lipschitz constants associated with each partition are the result of adaptively balancing the global and local information obtained so far from the algorithm, given in terms of absolute slopes. We motivate a coupling strategy with local optimization algorithms to accelerate the convergence speed of the proposed approach. In the end, we compare our approach HALO (Hybrid Adaptive Lipschitzian Optimization) with respect to popular GO algorithms using hundreds of test functions. From the numerical results, the performance of HALO is very promising and can extend our arsenal of efficient procedures for attacking challenging real-world GO problems. The Python code of HALO is publicly available on GitHub. https://github.com/dannyzx/HAL

    A hybrid of Bayesian-based global search with Hooke–Jeeves local refinement for multi-objective optimization problems

    Get PDF
    The proposed multi-objective optimization algorithm hybridizes random global search with a local refinement algorithm. The global search algorithm mimics the Bayesian multi-objective optimization algorithm. The site of current computation of the objective functions by the proposed algorithm is selected by randomized simulation of the bi-objective selection by the Bayesian-based algorithm. The advantage of the new algorithm is that it avoids the inner complexity of Bayesian algorithms. A version of the Hooke–Jeeves algorithm is adapted for the local refinement of the approximation of the Pareto front. The developed hybrid algorithm is tested under conditions previously applied to test other Bayesian algorithms so that performance could be compared. Other experiments were performed to assess the efficiency of the proposed algorithm under conditions where the previous versions of Bayesian algorithms were not appropriate because of the number of objectives and/or dimensionality of the decision space

    A Vertical and Horizontal Intelligent Dataset Reduction Approach for Cyber-Physical Power Aware Intrusion Detection Systems

    Get PDF
    The Cypher Physical Power Systems (CPPS) became vital targets for intruders because of the large volume of high speed heterogeneous data provided from the Wide Area Measurement Systems (WAMS). The Nonnested Generalized Exemplars (NNGE) algorithm is one of the most accurate classification techniques that can work with such data of CPPS. However, NNGE algorithm tends to produce rules that test a large number of input features. This poses some problems for the large volume data and hinders the scalability of any detection system. In this paper, we introduce VHDRA, a Vertical and Horizontal Data Reduction Approach, to improve the classification accuracy and speed of the NNGE algorithm and reduce the computational resource consumption. VHDRA provides the following functionalities: (1) it vertically reduces the dataset features by selecting the most significant features and by reducing the NNGE's hyperrectangles. (2) It horizontally reduces the size of data while preserving original key events and patterns within the datasets using an approach called STEM, State Tracking and Extraction Method. The experiments show that the overall performance of VHDRA using both the vertical and the horizontal reduction reduces the NNGE hyperrectangles by 29.06%, 37.34%, and 26.76% and improves the accuracy of the NNGE by 8.57%, 4.19%, and 3.78% using the Multi-, Binary, and Triple class datasets, respectively.This work was made possible by NPRP Grant # NPRP9-005-1-002 from the Qatar National Research Fund (a member of Qatar Foundation).Scopu

    Modelos híbridos de aprendizaje basados en instancias y reglas para Clasificación Monotónica

    Get PDF
    En los problemas de clasificación supervisada, el atributo respuesta depende de determinados atributos de entrada explicativos. En muchos problemas reales el atributo respuesta está representado por valores ordinales que deberían incrementarse cuando algunos de los atributos explicativos de entrada también lo hacen. Estos son los llamados problemas de clasificación con restricciones monotónicas. En esta Tesis, hemos revisado los clasificadores monotónicos propuestos en la literatura y hemos formalizado la teoría del aprendizaje basado en ejemplos anidados generalizados para abordar la clasificación monotónica. Propusimos dos algoritmos, un primer algoritmos voraz, que require de datos monotónicos y otro basado en algoritmos evolutivos, que es capaz de abordar datos imperfectos que presentan violaciones monotónicas entre las instancias. Ambos mejoran el acierto, el índice de no-monotonicidad de las predicciones y la simplicidad de los modelos sobre el estado-del-arte.In supervised prediction problems, the response attribute depends on certain explanatory attributes. Some real problems require the response attribute to represent ordinal values that should increase with some of the explaining attributes. They are called classification problems with monotonicity constraints. In this thesis, we have reviewed the monotonic classifiers proposed in the literature and we have formalized the nested generalized exemplar learning theory to tackle monotonic classification. Two algorithms were proposed, a first greedy one, which require monotonic data and an evolutionary based algorithm, which is able to address imperfect data with monotonic violations present among the instances. Both improve the accuracy, the non-monotinic index of predictions and the simplicity of models over the state-of-the-art.Tesis Univ. Jaén. Departamento INFORMÁTIC

    IRDDS: Instance reduction based on Distance-based decision surface

    Get PDF
    In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, which is an important task for classifiers since through this process the time for classification or training could be reduced. Instance-based learning methods are often confronted with the difficulty of choosing the instances which must be stored to be used during an actual test. Storing too many instances may result in large memory requirements and slow execution speed. In this paper, first, a Distance-based Decision Surface (DDS) is proposed which is used as a separating surface between the classes, then an instance reduction method, which is based on the DDS surface is proposed, namely IRDDS (Instance Reduction based on Distance-based Decision Surface). Using the DDS surface with Genetic algorithm selects a reference set for classification. IRDDS selects the most representative instances, satisfying both following objectives: high accuracy and reduction rates. The performance of IRDDS has been evaluated on real world data sets from UCI repository by the 10-fold cross-validation method. The results of the experiments are compared with some state-of-the-art methods, which show the superiority of the proposed method over the surveyed literature, in terms of both classification accuracy and reduction percentage

    ND-Tree-based update: a Fast Algorithm for the Dynamic Non-Dominance Problem

    Full text link
    In this paper we propose a new method called ND-Tree-based update (or shortly ND-Tree) for the dynamic non-dominance problem, i.e. the problem of online update of a Pareto archive composed of mutually non-dominated points. It uses a new ND-Tree data structure in which each node represents a subset of points contained in a hyperrectangle defined by its local approximate ideal and nadir points. By building subsets containing points located close in the objective space and using basic properties of the local ideal and nadir points we can efficiently avoid searching many branches in the tree. ND-Tree may be used in multiobjective evolutionary algorithms and other multiobjective metaheuristics to update an archive of potentially non-dominated points. We prove that the proposed algorithm has sub-linear time complexity under mild assumptions. We experimentally compare ND-Tree to the simple list, Quad-tree, and M-Front methods using artificial and realistic benchmarks with up to 10 objectives and show that with this new method substantial reduction of the number of point comparisons and computational time can be obtained. Furthermore, we apply the method to the non-dominated sorting problem showing that it is highly competitive to some recently proposed algorithms dedicated to this problem.Comment: 15 pages, 21 figures, 3 table

    Global optimization algorithms for image registration and clustering

    Get PDF
    Global optimization is a classical problem of finding the minimum or maximum value of an objective function. It has applications in many areas, such as biological image analysis, chemistry, mechanical engineering, financial analysis, deep learning and image processing. For practical applications, it is important to understand the efficiency of global optimization algorithms. This dissertation develops and analyzes some new global optimization algorithms and applies them to practical problems, mainly for image registration and data clustering. First, the dissertation presents a new global optimization algorithm which approximates the optimum using only function values. The basic idea is to use the points at which the function has been evaluated to decompose the domain into a collection of hyper-rectangles. At each step of the algorithm, it chooses a hyper-rectangle according to a certain criterion and the next function evaluation is at the center of the hyper-rectangle. The dissertation includes a proof that the algorithm converges to the global optimum as the number of function evaluations goes to infinity, and also establishes the convergence rate. Standard test functions are used to experimentally evaluate the algorithm. The second part focuses on applying algorithms from the first part to solve some practical problems. Image processing tasks often require optimizing over some set of parameters. In the image registration problem, one attempts to determine the best transformation for aligning similar images. Such problems typically require minimizing a dissimilarity measure with multiple local minima. The dissertation describes a global optimization algorithm and applies it to the problem of identifying the best transformation for aligning two images. Global optimization algorithms can also be applied to the data clustering problem. The basic purpose of clustering is to categorize data into different groups by their similarity. The objective cost functions for clustering usually are non-convex. kk-means is a popular algorithm which can find local optima quickly but may not obtain global optima. The different starting points for kk-means can output different local optima. This dissertation describes a global optimization algorithm for approximating the global minimum of the clustering problem. The third part of the dissertation presents variations of the proposed algorithm that work with different assumptions on the available information, including a version that uses derivatives
    corecore