14,979 research outputs found

    IoT Sentinel: Automated Device-Type Identification for Security Enforcement in IoT

    Full text link
    With the rapid growth of the Internet-of-Things (IoT), concerns about the security of IoT devices have become prominent. Several vendors are producing IP-connected devices for home and small office networks that often suffer from flawed security designs and implementations. They also tend to lack mechanisms for firmware updates or patches that can help eliminate security vulnerabilities. Securing networks where the presence of such vulnerable devices is given, requires a brownfield approach: applying necessary protection measures within the network so that potentially vulnerable devices can coexist without endangering the security of other devices in the same network. In this paper, we present IOT SENTINEL, a system capable of automatically identifying the types of devices being connected to an IoT network and enabling enforcement of rules for constraining the communications of vulnerable devices so as to minimize damage resulting from their compromise. We show that IOT SENTINEL is effective in identifying device types and has minimal performance overhead

    Body language, security and e-commerce

    Get PDF
    Security is becoming an increasingly more important concern both at the desktop level and at the network level. This article discusses several approaches to authenticating individuals through the use of biometric devices. While libraries might not implement such devices, they may appear in the near future of desktop computing, particularly for access to institutional computers or for access to sensitive information. Other approaches to computer security focus on protecting the contents of electronic transmissions and verification of individual users. After a brief overview of encryption technologies, the article examines public-key cryptography which is getting a lot of attention in the business world in what is called public key infrastructure. It also examines other efforts, such as IBM’s Cryptolope, the Secure Sockets Layer of Web browsers, and Digital Certificates and Signatures. Secure electronic transmissions are an important condition for conducting business on the Net. These business transactions are not limited to purchase orders, invoices, and contracts. This could become an important tool for information vendors and publishers to control access to the electronic resources they license. As license negotiators and contract administrators, librarians need to be aware of what is happening in these new technologies and the impact that will have on their operations

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    Exploiting Lack of Hardware Reciprocity for Sender-Node Authentication at the PHY Layer

    Get PDF
    This paper proposes to exploit the so-called reciprocity parameters (modelling non-reciprocal communication hardware) to use them as decision metric for binary hypothesis testing based authentication framework at a receiver node Bob. Specifically, Bob first learns the reciprocity parameters of the legitimate sender Alice via initial training. Then, during the test phase, Bob first obtains a measurement of reciprocity parameters of channel occupier (Alice, or, the intruder Eve). Then, with ground truth and current measurement both in hand, Bob carries out the hypothesis testing to automatically accept (reject) the packets sent by Alice (Eve). For the proposed scheme, we provide its success rate (the detection probability of Eve), and its performance comparison with other schemes

    Data Leak Detection As a Service: Challenges and Solutions

    Get PDF
    We describe a network-based data-leak detection (DLD) technique, the main feature of which is that the detection does not require the data owner to reveal the content of the sensitive data. Instead, only a small amount of specialized digests are needed. Our technique – referred to as the fuzzy fingerprint – can be used to detect accidental data leaks due to human errors or application flaws. The privacy-preserving feature of our algorithms minimizes the exposure of sensitive data and enables the data owner to safely delegate the detection to others.We describe how cloud providers can offer their customers data-leak detection as an add-on service with strong privacy guarantees. We perform extensive experimental evaluation on the privacy, efficiency, accuracy and noise tolerance of our techniques. Our evaluation results under various data-leak scenarios and setups show that our method can support accurate detection with very small number of false alarms, even when the presentation of the data has been transformed. It also indicates that the detection accuracy does not degrade when partial digests are used. We further provide a quantifiable method to measure the privacy guarantee offered by our fuzzy fingerprint framework
    • …
    corecore