125 research outputs found

    Hardness of robust graph isomorphism, Lasserre gaps, and asymmetry of random graphs

    Full text link
    Building on work of Cai, F\"urer, and Immerman \cite{CFI92}, we show two hardness results for the Graph Isomorphism problem. First, we show that there are pairs of nonisomorphic nn-vertex graphs GG and HH such that any sum-of-squares (SOS) proof of nonisomorphism requires degree Ω(n)\Omega(n). In other words, we show an Ω(n)\Omega(n)-round integrality gap for the Lasserre SDP relaxation. In fact, we show this for pairs GG and HH which are not even (1−10−14)(1-10^{-14})-isomorphic. (Here we say that two nn-vertex, mm-edge graphs GG and HH are α\alpha-isomorphic if there is a bijection between their vertices which preserves at least αm\alpha m edges.) Our second result is that under the {\sc R3XOR} Hypothesis \cite{Fei02} (and also any of a class of hypotheses which generalize the {\sc R3XOR} Hypothesis), the \emph{robust} Graph Isomorphism problem is hard. I.e.\ for every ϵ>0\epsilon > 0, there is no efficient algorithm which can distinguish graph pairs which are (1−ϵ)(1-\epsilon)-isomorphic from pairs which are not even (1−ϵ0)(1-\epsilon_0)-isomorphic for some universal constant ϵ0\epsilon_0. Along the way we prove a robust asymmetry result for random graphs and hypergraphs which may be of independent interest

    A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

    Get PDF
    A (k×l)(k \times l)-birthday repetition Gk×l\mathcal{G}^{k \times l} of a two-prover game G\mathcal{G} is a game in which the two provers are sent random sets of questions from G\mathcal{G} of sizes kk and ll respectively. These two sets are sampled independently uniformly among all sets of questions of those particular sizes. We prove the following birthday repetition theorem: when G\mathcal{G} satisfies some mild conditions, val(Gk×l)val(\mathcal{G}^{k \times l}) decreases exponentially in Ω(kl/n)\Omega(kl/n) where nn is the total number of questions. Our result positively resolves an open question posted by Aaronson, Impagliazzo and Moshkovitz (CCC 2014). As an application of our birthday repetition theorem, we obtain new fine-grained hardness of approximation results for dense CSPs. Specifically, we establish a tight trade-off between running time and approximation ratio for dense CSPs by showing conditional lower bounds, integrality gaps and approximation algorithms. In particular, for any sufficiently large ii and for every k≥2k \geq 2, we show the following results: - We exhibit an O(q1/i)O(q^{1/i})-approximation algorithm for dense Max kk-CSPs with alphabet size qq via Ok(i)O_k(i)-level of Sherali-Adams relaxation. - Through our birthday repetition theorem, we obtain an integrality gap of q1/iq^{1/i} for Ω~k(i)\tilde\Omega_k(i)-level Lasserre relaxation for fully-dense Max kk-CSP. - Assuming that there is a constant ϵ>0\epsilon > 0 such that Max 3SAT cannot be approximated to within (1−ϵ)(1-\epsilon) of the optimal in sub-exponential time, our birthday repetition theorem implies that any algorithm that approximates fully-dense Max kk-CSP to within a q1/iq^{1/i} factor takes (nq)Ω~k(i)(nq)^{\tilde \Omega_k(i)} time, almost tightly matching the algorithmic result based on Sherali-Adams relaxation.Comment: 45 page

    Mildly Exponential Time Approximation Algorithms for Vertex Cover, Balanced Separator and Uniform Sparsest Cut

    Get PDF
    In this work, we study the trade-off between the running time of approximation algorithms and their approximation guarantees. By leveraging a structure of the "hard" instances of the Arora-Rao-Vazirani lemma [Sanjeev Arora et al., 2009; James R. Lee, 2005], we show that the Sum-of-Squares hierarchy can be adapted to provide "fast", but still exponential time, approximation algorithms for several problems in the regime where they are believed to be NP-hard. Specifically, our framework yields the following algorithms; here n denote the number of vertices of the graph and r can be any positive real number greater than 1 (possibly depending on n). - A (2 - 1/(O(r)))-approximation algorithm for Vertex Cover that runs in exp (n/(2^{r^2)})n^{O(1)} time. - An O(r)-approximation algorithms for Uniform Sparsest Cut and Balanced Separator that runs in exp (n/(2^{r^2)})n^{O(1)} time. Our algorithm for Vertex Cover improves upon Bansal et al.\u27s algorithm [Nikhil Bansal et al., 2017] which achieves (2 - 1/(O(r)))-approximation in time exp (n/(r^r))n^{O(1)}. For Uniform Sparsest Cut and Balanced Separator, our algorithms improve upon O(r)-approximation exp (n/(2^r))n^{O(1)}-time algorithms that follow from a work of Charikar et al. [Moses Charikar et al., 2010]

    Definability of semidefinite programming and lasserre lower bounds for CSPs

    Get PDF
    We show that the ellipsoid method for solving semidefinite programs (SDPs) can be expressed in fixed-point logic with counting (FPC). This generalizes an earlier result that the optimal value of a linear program can be expressed in this logic. As an application, we establish lower bounds on the number of levels of the Lasserre hierarchy required to solve many optimization problems, namely those that can be expressed as finite-valued constraint satisfaction problems (VCSPs). In particular, we establish a dichotomy on the number of levels of the Lasserre hierarchy that are required to solve the problem exactly. We show that if a finite-valued constraint problem is not solved exactly by its basic linear programming relaxation, it is also not solved exactly by any sub-linear number of levels of the Lasserre hierarchy. The lower bounds are established through logical undefinability results. We show that the SDP corresponding to any fixed level of the Lasserre hierarchy is interpretable in a VCSP instance by means of FPC formulas. Our definability result of the ellipsoid method then implies that the solution of this SDP can be expressed in this logic. Together, these results give a way of translating lower bounds on the number of variables required in counting logic to express a VCSP into lower bounds on the number of levels required in the Lasserre hierarchy to eliminate the integrality gap. As a special case, we obtain the same dichotomy for the class of MAXCSP problems, generalizing earlier Lasserre lower bound results by Schoenebeck [17]. Recently, and independently of the work reported here, a similar linear lower bound in the Lasserre hierarchy for general-valued CSPs has also been announced by Thapper and Zivny [20], using different techniques
    • …
    corecore