91 research outputs found

    Virtual Runtime Application Partitions for Resource Management in Massively Parallel Architectures

    Get PDF
    This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.Siirretty Doriast

    VLSI design of configurable low-power coarse-grained array architecture

    Get PDF
    Biomedical signal acquisition from in- or on-body sensors often requires local (on-node) low-level pre-processing before the data are sent to a remote node for aggregation and further processing. Local processing is required for many different operations, which include signal cleanup (noise removal), sensor calibration, event detection and data compression. In this environment, processing is subject to aggressive energy consumption restrictions, while often operating under real-time requirements. These conflicting requirements impose the use of dedicated circuits addressing a very specific task or the use of domain-specific customization to obtain significant gains in power efficiency. However, economic and time-to-market constraints often make the development or use of application-specific platforms very risky.One way to address these challenges is to develop a sensor node with a general-purpose architecture combining a low-power, low-performance general microprocessor or micro-controller with a coarse-grained reconfigurable array (CGRA) acting as an accelerator. A CGRA consists of a fixed number of processing units (e.g., ALUs) whose function and interconnections are determined by some configuration data.The objective of this work is to create an RTL-level description of a low-power CGRA of ALUs and produce a low-power VLSI (standard cell) implementation, that supports power-saving features.The CGRA implementation should use as few resources as possible and fully exploit the intended operation environment. The design will be evaluated with a set of simple signal processing task

    Polymorphic Pipeline Array: A Flexible Multicore Accelerator for Mobile Multimedia Applications.

    Full text link
    Mobile computing in the form of smart phones, netbooks, and PDAs has become an integral part of our everyday lives. Moving ahead to the next generation of mobile devices, we believe that multimedia will become a more critical and product-differentiating feature. High definition audio and video as well as 3D graphics provide richer interfaces and compelling capabilities. However, these algorithms also bring different computational challenges than wireless signal processing. Multimedia algorithms are more complex featuring more control flow and variable computational requirements where execution time is not dominated by innermost vector loops. Further, data access is more complex where media applications typically operate on multi-dimensional vectors of data rather than single-dimensional vectors with simple strides. Thus, the design of current mobile platforms requires re-examination to account for these new application domains. In this dissertation, we focus on the design of a programmable, low-power accelerator for multimedia algorithms referred to as a Polymorphic Pipeline Array (PPA). The PPA design is inspired by coarse-grain reconfigurable architectures (CGRAs) that consist of an array of function units interconnected by a mesh style interconnect. The PPA improves upon CGRAs by attacking two major limitations: scalability and acceleration limited to innermost loops. The large number of resources are fully utilized by exploiting both Lne-grain instruction-level and coarse-grain pipeline parallelism, and the acceleration is extended beyond innermost loops to encompass the whole region of applications. Various compiler and architectural optimizations are presented for CGRAs that form the basic building blocks of PPA. Two compiler techniques are presented that systematically construct the schedule with intelligent heuristics. Modulo graph embedding leverages graph embedding technique for scheduling in CGRAs and edgecentric modulo scheduling provides a communication-oriented way to address the scheduling problem. For architectural improvement, a novel control path design is presented that leverages the token network of dataflow machines to reduce the instructionmemory power. The PPA is designed with flexibility and programmability as first-order requirements to enable the hardware to be dynamically customizable to the application. A PPA exploit pipeline parallelism found in streaming applications to create a coarsegrain hardware pipeline to execute streaming media applications.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64732/1/parkhc_1.pd

    Towards Closing the Programmability-Efficiency Gap using Software-Defined Hardware

    Full text link
    The past decade has seen the breakdown of two important trends in the computing industry: Moore’s law, an observation that the number of transistors in a chip roughly doubles every eighteen months, and Dennard scaling, that enabled the use of these transistors within a constant power budget. This has caused a surge in domain-specific accelerators, i.e. specialized hardware that deliver significantly better energy efficiency than general-purpose processors, such as CPUs. While the performance and efficiency of such accelerators are highly desirable, the fast pace of algorithmic innovation and non-recurring engineering costs have deterred their widespread use, since they are only programmable across a narrow set of applications. This has engendered a programmability-efficiency gap across contemporary platforms. A practical solution that can close this gap is thus lucrative and is likely to engender broad impact in both academic research and the industry. This dissertation proposes such a solution with a reconfigurable Software-Defined Hardware (SDH) system that morphs parts of the hardware on-the-fly to tailor to the requirements of each application phase. This system is designed to deliver near-accelerator-level efficiency across a broad set of applications, while retaining CPU-like programmability. The dissertation first presents a fixed-function solution to accelerate sparse matrix multiplication, which forms the basis of many applications in graph analytics and scientific computing. The solution consists of a tiled hardware architecture, co-designed with the outer product algorithm for Sparse Matrix-Matrix multiplication (SpMM), that uses on-chip memory reconfiguration to accelerate each phase of the algorithm. A proof-of-concept is then presented in the form of a prototyped 40 nm Complimentary Metal-Oxide Semiconductor (CMOS) chip that demonstrates energy efficiency and performance per die area improvements of 12.6x and 17.1x over a high-end CPU, and serves as a stepping stone towards a full SDH system. The next piece of the dissertation enhances the proposed hardware with reconfigurability of the dataflow and resource sharing modes, in order to extend acceleration support to a set of common parallelizable workloads. This reconfigurability lends the system the ability to cater to discrete data access and compute patterns, such as workloads with extensive data sharing and reuse, workloads with limited reuse and streaming access patterns, among others. Moreover, this system incorporates commercial cores and a prototyped software stack for CPU-level programmability. The proposed system is evaluated on a diverse set of compute-bound and memory-bound kernels that compose applications in the domains of graph analytics, machine learning, image and language processing. The evaluation shows average performance and energy-efficiency gains of 5.0x and 18.4x over the CPU. The final part of the dissertation proposes a runtime control framework that uses low-cost monitoring of hardware performance counters to predict the next best configuration and reconfigure the hardware, upon detecting a change in phase or nature of data within the application. In comparison to prior work, this contribution targets multicore CGRAs, uses low-overhead decision tree based predictive models, and incorporates reconfiguration cost-awareness into its policies. Compared to the best-average static (non-reconfiguring) configuration, the dynamically reconfigurable system achieves a 1.6x improvement in performance-per-Watt in the Energy-Efficient mode of operation, or the same performance with 23% lower energy in the Power-Performance mode, for SpMM across a suite of real-world inputs. The proposed reconfiguration mechanism itself outperforms the state-of-the-art approach for dynamic runtime control by up to 2.9x in terms of energy-efficiency.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169859/1/subh_1.pd

    Effect of a Polywell geometry on a CMOS Photodiode Array

    Get PDF
    The effect of a polywell geometry hybridized with a stacked gradient poly-homojunction architecture, on the response of a CMOs compatible photodiode array was simulated. Crosstalk and sensitivity improved compared to the polywell geometry alone, for both back and front illuminatio

    KAPLA: Pragmatic Representation and Fast Solving of Scalable NN Accelerator Dataflow

    Full text link
    Dataflow scheduling decisions are of vital importance to neural network (NN) accelerators. Recent scalable NN accelerators support a rich set of advanced dataflow techniques. The problems of comprehensively representing and quickly finding optimized dataflow schemes thus become significantly more complicated and challenging. In this work, we first propose comprehensive and pragmatic dataflow representations for temporal and spatial scheduling on scalable multi-node NN architectures. An informal hierarchical taxonomy highlights the tight coupling across different levels of the dataflow space as the major difficulty for fast design exploration. A set of formal tensor-centric directives accurately express various inter-layer and intra-layer schemes, and allow for quickly determining their validity and efficiency. We then build a generic, optimized, and fast dataflow solver, KAPLA, which makes use of the pragmatic directives to explore the design space with effective validity check and efficiency estimation. KAPLA decouples the upper inter-layer level for fast pruning, and solves the lower intra-layer schemes with a novel bottom-up cost descending method. KAPLA achieves within only 2.2% and 7.7% energy overheads on the result dataflow for training and inference, respectively, compared to the exhaustively searched optimal schemes. It also outperforms random and machine-learning-based approaches, with more optimized results and orders of magnitude faster search speedup

    Communication platform for inter-satellite links in distributed satellite systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore