1,960 research outputs found

    A Multilevel Introspective Dynamic Optimization System For Holistic Power-Aware Computing

    Get PDF
    Power consumption is rapidly becoming the dominant limiting factor for further improvements in computer design. Curiously, this applies both at the "high end" of workstations and servers and the "low end" of handheld devices and embedded computers. At the high-end, the challenge lies in dealing with exponentially growing power densities. At the low-end, there is a demand to make mobile devices more powerful and longer lasting, but battery technology is not improving at the same rate that power consumption is rising. Traditional power-management research is fragmented; techniques are being developed at specific levels, without fully exploring their synergy with other levels. Most software techniques target either operating systems or compilers but do not explore the interaction between the two layers. These techniques also have not fully explored the potential of virtual machines for power management. In contrast, we are developing a system that integrates information from multiple levels of software and hardware, connecting these levels through a communication channel. At the heart of this system are a virtual machine that compiles and dynamically profiles code, and an optimizer that reoptimizes all code, including that of applications and the virtual machine itself. We believe this introspective, holistic approach enables more informed power-management decisions

    PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with Pattern-based Weight Pruning

    Full text link
    With the emergence of a spectrum of high-end mobile devices, many applications that formerly required desktop-level computation capability are being transferred to these devices. However, executing the inference of Deep Neural Networks (DNNs) is still challenging considering high computation and storage demands, specifically, if real-time performance with high accuracy is needed. Weight pruning of DNNs is proposed, but existing schemes represent two extremes in the design space: non-structured pruning is fine-grained, accurate, but not hardware friendly; structured pruning is coarse-grained, hardware-efficient, but with higher accuracy loss. In this paper, we introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space. With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency. In other words, our method achieves the best of both worlds, and is desirable across theory/algorithm, compiler, and hardware levels. The proposed PatDNN is an end-to-end framework to efficiently execute DNN on mobile devices with the help of a novel model compression technique (pattern-based pruning based on extended ADMM solution framework) and a set of thorough architecture-aware compiler- and code generation-based optimizations (filter kernel reordering, compressed weight storage, register load redundancy elimination, and parameter auto-tuning). Evaluation results demonstrate that PatDNN outperforms three state-of-the-art end-to-end DNN frameworks, TensorFlow Lite, TVM, and Alibaba Mobile Neural Network with speedup up to 44.5x, 11.4x, and 7.1x, respectively, with no accuracy compromise. Real-time inference of representative large-scale DNNs (e.g., VGG-16, ResNet-50) can be achieved using mobile devices.Comment: To be published in the Proceedings of Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 20

    Energy Transparency for Deeply Embedded Programs

    Get PDF
    Energy transparency is a concept that makes a program's energy consumption visible, from hardware up to software, through the different system layers. Such transparency can enable energy optimizations at each layer and between layers, and help both programmers and operating systems make energy-aware decisions. In this paper, we focus on deeply embedded devices, typically used for Internet of Things (IoT) applications, and demonstrate how to enable energy transparency through existing Static Resource Analysis (SRA) techniques and a new target-agnostic profiling technique, without hardware energy measurements. Our novel mapping technique enables software energy consumption estimations at a higher level than the Instruction Set Architecture (ISA), namely the LLVM Intermediate Representation (IR) level, and therefore introduces energy transparency directly to the LLVM optimizer. We apply our energy estimation techniques to a comprehensive set of benchmarks, including single- and also multi-threaded embedded programs from two commonly used concurrency patterns, task farms and pipelines. Using SRA, our LLVM IR results demonstrate a high accuracy with a deviation in the range of 1% from the ISA SRA. Our profiling technique captures the actual energy consumption at the LLVM IR level with an average error of 3%.Comment: 33 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1510.0709

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    pocl: A Performance-Portable OpenCL Implementation

    Get PDF
    OpenCL is a standard for parallel programming of heterogeneous systems. The benefits of a common programming standard are clear; multiple vendors can provide support for application descriptions written according to the standard, thus reducing the program porting effort. While the standard brings the obvious benefits of platform portability, the performance portability aspects are largely left to the programmer. The situation is made worse due to multiple proprietary vendor implementations with different characteristics, and, thus, required optimization strategies. In this paper, we propose an OpenCL implementation that is both portable and performance portable. At its core is a kernel compiler that can be used to exploit the data parallelism of OpenCL programs on multiple platforms with different parallel hardware styles. The kernel compiler is modularized to perform target-independent parallel region formation separately from the target-specific parallel mapping of the regions to enable support for various styles of fine-grained parallel resources such as subword SIMD extensions, SIMD datapaths and static multi-issue. Unlike previous similar techniques that work on the source level, the parallel region formation retains the information of the data parallelism using the LLVM IR and its metadata infrastructure. This data can be exploited by the later generic compiler passes for efficient parallelization. The proposed open source implementation of OpenCL is also platform portable, enabling OpenCL on a wide range of architectures, both already commercialized and on those that are still under research. The paper describes how the portability of the implementation is achieved. Our results show that most of the benchmarked applications when compiled using pocl were faster or close to as fast as the best proprietary OpenCL implementation for the platform at hand.Comment: This article was published in 2015; it is now openly accessible via arxi

    Secure Compilation (Dagstuhl Seminar 18201)

    Get PDF
    Secure compilation is an emerging field that puts together advances in security, programming languages, verification, systems, and hardware architectures in order to devise secure compilation chains that eliminate many of today\u27s vulnerabilities. Secure compilation aims to protect a source language\u27s abstractions in compiled code, even against low-level attacks. For a concrete example, all modern languages provide a notion of structured control flow and an invoked procedure is expected to return to the right place. However, today\u27s compilation chains (compilers, linkers, loaders, runtime systems, hardware) cannot efficiently enforce this abstraction: linked low-level code can call and return to arbitrary instructions or smash the stack, blatantly violating the high-level abstraction. The emerging secure compilation community aims to address such problems by devising formal security criteria, efficient enforcement mechanisms, and effective proof techniques. This seminar strived to take a broad and inclusive view of secure compilation and to provide a forum for discussion on the topic. The goal was to identify interesting research directions and open challenges by bringing together people working on building secure compilation chains, on developing proof techniques and verification tools, and on designing security mechanisms
    • …
    corecore